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Abstract
Monte Carlo techniques have played an important role in understanding strongly correlated systems
across many areas of physics, covering a wide range of energy and length scales. Among the many
Monte Carlo methods applicable to quantum mechanical systems, the path integral Monte Carlo
approach with its variants has been employed widely. Since semi-classical or classical approaches
will not be discussed in this review, path integral based approaches can for our purposes be divided
into two categories: approaches applicable to quantum mechanical systems at zero temperature and
approaches applicable to quantum mechanical systems at finite temperature. While these two
approaches are related to each other, the underlying formulation and aspects of the algorithm differ.
This paper reviews the path integral Monte Carlo ground state (PIGS) approach, which solves the
time-independent Schrödinger equation. Specifically, the PIGS approach allows for the determination
of expectation values with respect to eigen states of the few- or many-body Schrödinger equation
provided the system Hamiltonian is known. The theoretical framework behind the PIGS algorithm,
implementation details, and sample applications for fermionic systems are presented.
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1. Introduction

Monte Carlo techniques have found many applications, ran-
ging from the modeling of the stock market to the simulation
of classical and quantum spin models [1]. This review
introduces the path integral Monte Carlo ground state (PIGS)
method [2–5], which allows for the treatment of quantum
mechanical systems with continuous spatial degrees of free-
dom at zero temperature. The PIGS method is a variant of the
finite temperature path integral Monte Carlo method [6]. The
key quantity in the finite temperature path integral Monte

Carlo approach is the density matrix r̂, r = -ˆ [ ˆ ( )]H k Texp B ,
where Ĥ denotes the quantum mechanical system Hamilto-
nian, kB the Boltzmann constant, and T the temperature.
Making the formal replacement �=-( )k T ıtB

1 , where t is
the time, the density matrix turns into the time evolution
operator. Introducing the imaginary time τ, �t = ıt , and
repeatedly acting with the ‘imaginary time evolution operator’

tDˆ ( )G , t tD = -Dˆ ( ) ( ˆ )G Hexp (assuming tD is, using a
metric to be defined later, small) onto an initial state, the
ground state wave function, or more precisely the lowest
energy state that has finite overlap with the initial state, is
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projected out. This projection idea is the key concept behind
the PIGS approach as well as many other imaginary time
propagation schemes [7, 8]. Unlike grid based or basis set
expansion based approaches, the PIGS approach is applicable
to systems with varying degrees of freedom, i.e. few- and
many-body systems. This versatility of the PIGS approach
stems from the fact that the action of the imaginary time
evolution operator on the initial (or propagated) state is
evaluated stochastically, i.e. by means of Monte Carlo
Metropolis sampling.

While the finite temperature path integral Monte Carlo
algorithm, which—as has already been aluded to—has many
features in common with the PIGS algorithm, has been
reviewed quite extensively [6, 9], the PIGS algorithm has not,
despite its generality, been reviewed in detail in the literature.
The present paper thus serves three main purposes: (i) it
develops, starting from equations that should be familiar to an
advanced undergraduate student, the theoretical concepts
behind the PIGS algorithm. (ii) It details how the relevant
equations can be evaluated numerically, provides a good
number of implementation details, and discusses various
aspects regarding the algorithm performance. (iii) It presents
applications of the PIGS algorithm to fermionic systems.

The PIGS approach allows one to solve the time-inde-
pendent non-relativistic Schrödinger equation. Since the PIGS
algorithm does not provide the full wave function in numer-
ical or analytical form, the type of expectation values that one
would like to determine needs to be specified a priori rather
than a posteriori. In particular, an estimator has to be derived
and implemented for each observable. The PIGS algorithm
works, as already mentioned, through imaginary time pro-
pagation. It is imperative to clarify upfront that the imaginary
time propagation is a numerical tool that facilitates projecting
out unwanted excited state contributions. An extension to the
real time evolution is, in general, not feasible, at least not for
systems with a large number of degrees of freedom (for small
systems, grid based real time propagation schemes do, of
course, exist). A key ingredient of the PIGS algorithm is the
stochastic evaluation of high-dimensional integrals, which
arise from the discretization of the imaginary time and from
the intrinsic degrees of freedom (particle coordinates) of the
system under study. The stochastic Monte Carlo based
approach to evaluating these integrals makes the PIGS
method applicable to large systems containing as many as
hundreds of particles. However, as in many Monte Carlo
techniques, the treatment of identical fermions leads to the
infamous Fermi sign problem. This tutorial applies the PIGS
algorithm to small fermionic systems with zero-range inter-
actions. It is shown that the sign problem can be ‘postponed’
but not be avoided, i.e. application of the PIGS algorithm to
larger fermionic systems with zero-range interactions will
necessarily fail.

The PIGS algorithm has been applied to systems relevant
to physics and chemistry. For example, our understanding of
pristine and doped bosonic helium clusters of varying size has
been informed by PIGS calculations [10]. Unlike alternative
zero-temperature methods such as the variational Monte Carlo
method [7, 11] and the diffusion quantum Monte Carlo method

with mixed estimators [12, 13], the PIGS approach is known to
yield unbiased results for structural properties like the radial
density and pair distribution function. Here the term ‘unbiased’
refers to the fact that the resulting structural properties are
independent of the initial state, provided the initial state has
finite overlap with the state of interest and provided the state of
interest is the lowest energy state with a particular symmetry.
Moreover, the condensate fraction [6, 14] and Renyi entropy
[15, 16] are observables that can be calculated relatively
straightforwardly within the PIGS algorithm (or at least more
straightforwardly than within a number of other approaches).
The PIGS algorithm has also been, among others, applied to
bulk helium in varying spatial dimensions [14, 17–24], liquid
helium in nano-pores [25, 26], molecular para-hydrogen in
nano-pores [27, 28], molecular para-hydrogen clusters [29–31],
hardsphere bosons [32, 33], dipolar systems [34, 35], and cold
atoms loaded into optical lattices [36].

The applications presented in this review deal with cold
atom systems with infinitely large two-body s-wave scattering
length as [37–39], which are—like helium droplets—strongly
interacting. However, the average interparticle spacing in cold
atom systems tends to be significantly larger than that in
helium droplets. This implies that the sample applications
presented in this review deal with Hamiltonian that are
characterized by vastly different length scales. To describe
systems for which the average interparticle distance is large
compared to the two-body interaction range, we employ two-
body zero-range interactions. The use of two-body zero-range
interactions removes the two-body range from the problem. If
as is send to infinity, as in the applications presented in this
review, then two-component fermions are characterized by
the same number of length scales as the corresponding non-
interacting system [37, 38, 40, 41].

For bosons, in contrast, a three-body parameter, which can
be defined in terms of the size of one of the extremely weakly
bound Efimov trimers, sets a length scale of the interacting
system even if the range of the two-body interactions is zero.
Since the use of two-body zero-range interactions in continuum
Monte Carlo calculations is a fairly novel development [42–48],
the associated implementation details are discussed in detail.
Simulation results are presented for fermionic systems. Appli-
cation of the algorithm to bosons requires only a few changes in
the code; however, due to the existence of a three-body para-
meter, the number of time slices, e.g., is much larger than for
fermionic systems with two-body zero-range interactions.

The remainder of this article is organized as follows.
Section 2 introduces, starting from the non-relativistic
Schrödinger equation, the key quantum mechanical equations
behind the PIGS algorithm. Section 3 discusses a number of
theoretical concepts that are needed to reformulate the basic
quantum mechanical equations in a form amenable to
computer simulations; many considerations in this section do
not only apply to the PIGS algorithm but also to other Monte
Carlo algorithms. Section 3.1 introduces some basic ideas.
Sections 3.2 and 3.3 discuss two different approaches for
approximating the short-time propagator, namely a Trotter
formula based approach and an approach that utilizes the so-
called pair product approximation; these two approaches are
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compared in section 3.4. The use of two-body zero-range
interactions within the pair product approximation is dis-
cussed in section 3.5. Section 4 ‘translates’ the formalism
introduced in sections 2 and 3 into an algorithm. Section 4.1
introduces the basics of Monte Carlo sampling of high-
dimensional integrals while section 4.2 reviews formal
aspects of the Monte Carlo Metropolis sampling. Section 4.3
discusses the generation of new configurations, i.e. the moves
employed in the PIGS algorithm; as applicable, differences to
the path integral Monte Carlo algorithm are pointed out.
Sections 4.4 and 4.5 discuss the determination of expectation
values and associated error bars, respectively. Last,
section 4.6 discusses how to treat permutations in the PIGS
algorithm; this discussion is particularly relevant if the system
contains two or more identical fermions.

Section 5 presents a number of applications to harmo-
nically trapped equal-mass two-component Fermi gases. The
simulation results are discussed from two different angles. On
the one hand, ‘technical aspects’ such as convergence with
respect to the propagation time and the time step are dis-
cussed. On the other hand, the physical relevance of the
simulation results presented is highlighted. Spin-balanced
systems with up to N=10 particles and a non-interacting
Fermi gas with a single impurity with up to N=5 particles
are considered. In both cases, interspecies two-body zero-
range interactions with infinitely large s-wave scattering
length are employed. The construction of different types of
trial functions yT is discussed and the dependence of the
simulation results on yT is elucidated. PIGS results for the
energy, pair distribution function, and contact are presented
and compared to literature results where available. Lastly,
section 6 provides a summary and an outlook.

2. Quantum mechanical foundation

We consider N non-relativistic particles described by the time-
independent Hamiltonian Ĥ at zero temperature. The Hamil-
tonian may contain single-particle potentials, two-body poten-
tials, and higher-body potentials. We work in position space,
where the potentials are local, i.e. we consider potentials that
only depend on the position vectors and not on the momentum
vectors as would be the case if, e.g., spin–orbit coupling terms
were present [49–51]. The position vector for the jth particle
with mass mj is denoted by rj and we collectively denote the
position vectors of all the particles by R, = "{ }R r r r, , , N1 2 .
The stationary eigen states and corresponding eigen energies are
denoted by y ( )Rj and Ej, where = "j 0, 1, 2, . The y ( )Rj
form a complete set and we are, throughout this article, inter-
ested in systems that support at least one N-body bound state.
The treatment of scattering states by means of quantum Monte
Carlo approaches is, in general, a challenging task [52–55] that
is beyond the scope of this paper. The PIGS algorithm allows
one to calculate a subset of the bound state energies as well as
expectation values such as the pair distribution functions asso-
ciated with the corresponding eigen states.

The PIGS algorithm is rooted in imaginary time propaga-
tion, a concept that is used widely to find the ground state or
selected excited states of linear and non-linear Schrödinger
equations [8, 56]. The concept of imaginary time propagation is
also used to solve non-quantum mechanical wave equations. In
what follows, we restrict ourselves, for concreteness, to the linear
Schrödinger equation. To illustrate the key idea behind imaginary
time propagation algorithms, we assume that the ground state is
non-degenerate, i.e. that <E Ej0 for = "j 1, 2, . We consider
an initial trial function y ( )RT , which does not have to be nor-
malized, that has finite overlap with the ground state wave
function y ( )R0 . To analyze what happens when this trial func-
tion is propagated in imaginary time, we decompose the trial
function into the eigen states y ( )Rj of the Hamiltonian Ĥ ,

åy y=
=

¥

( ) ( ) ( )cR R , 1T
j

j j
0

where c0 is non-zero by assumption. Using equation (1), yt ( )R ,

y t y= -t ( ) ( ˆ ) ( ) ( )HR Rexp , 2T

can be written as

å

y t

y t y
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´ + - -

t
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⎪
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Since Ej is, by assumption, greater than E0, the excited states
contained in y ( )RT decay out during the imaginary time
propagation. In the t ¥ limit, yt ( )R approaches, except
for an overall factor, the eigen state y ( )R0 . Correspondingly,
the energy Eτ,

y y
y y

=
á ñ
á ñ

t
t t

t t

∣ ˆ ∣
∣

( )E
H

, 4

approaches the exact ground state energy E0 exponentially
in the t ¥ limit. For finite τ, tE provides an upper bound
to the exact eigen energy. This suggests that one can obtain
a reliable estimate of E0 by extrapolating the tE for various
finite τ to the t ¥ limit. Expectation values of an arbi-
trary operator Ô can be written analogously,

y y
y y

=
á ñ
á ñ

t
t t

t t

∣ ˆ ∣
∣

( )O
O

, 5

where tO denotes the τ-dependent expectation value. The
convergence of tO toward the exact expectation value with
respect to y ( )R0 may not be simply exponential and needs to be
analyzed carefully for each operator Ô (see section 5 for
examples).

Equations (2), (4), and (5) constitute the starting point of
the PIGS algorithm (see section 4). Based on these equations,
two ingredients or components of the PIGS algorithm can
already be identified. (i) An initial trial function y ( )RT needs
to be supplied by the ‘simulator’. From equation (3) it is clear
that the efficiency of the PIGS algorithm depends on the
overlap between y ( )RT and y ( )R0 : if all cj with >j 0 vanish,
then the imaginary time propagation is not needed at all. If the
cj for the states that lie energetically close to E0 vanish, then
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the decay of the excited states is fast, i.e. small τ should
suffice. The construction of y ( )RT is, of course, strongly
dependent on the Hamiltonian under study. Examples are
discussed in section 5. (ii) Given an initial trial function
y ( )RT , the action of t-( ˆ )Hexp onto y ( )RT needs to be
evaluated. The PIGS algorithm as well as many other algo-
rithms accomplish this by dividing τ into multiple smaller
imaginary time steps tD . While non-Monte Carlo based
approaches are, typically, restricted to relatively small system
sizes, the PIGS algorithm as well as other Monte Carlo
algorithms are designed to treat systems for which R can be a
high-dimensional vector.

The discussion thus far focused on determining the
absolute ground state of the system. The outlined formalism
can be readily adopted to the determination of the energeti-
cally lowest-lying state with a given symmetry. For con-
creteness, let us assume that the total angular momentum L
and the total parity Π are good quantum numbers and that the
absolute ground state has vanishing angular momentum
(L=0) and positive parity (P = +1). If y ( )RT is chosen to
have a symmetry other than P = +( ) ( )L, 0, 1 , say ¢ P¢( )L ,
symmetry, then the imaginary time propagation projects out
the eigen state with ¢ P¢( )L , symmetry that has the lowest
energy. Said differently, the imaginary time propagation
preserves the symmetry of y ( )RT and acts in a subspace of
the full Hilbert space.

It is instructive to compare the PIGS formalism discussed
above with another imaginary time propagation based Monte
Carlo technique, namely the diffusion Monte Carlo technique
(for the purpose of the discussion that follows, the Greenʼs
function Monte Carlo technique behaves identically) [7]. The
diffusion Monte Carlo approach utilizes, in addition to a trial
function, a reference energy Eref that is adjusted continually
during the simulation. If equation (3) is multiplied by

t( )Eexp ref , then the right hand side is, except for an overall

R-independent factor, independent of τ for sufficiently large τ
and =E Eref 0. This is the key idea behind the diffusion
Monte Carlo approach. The accumulation of expectation
values is started after the excited state contributions have
decayed out and after Eref has been adjusted such that

»E Eref 0. While the diffusion Monte Carlo and PIGS
approaches share, as just discussed, similarities, the treatment
of particle permutations differs notably if the system contains
two or more identical fermions. The diffusion Monte Carlo
algorithm does not explicitly apply sequences of two-particle

permutation operators; the identical particle characteristics
(bosons and/or fermions) of the N-particle wave function are
instead encoded via the trial function, combined with the
fixed- or released-node approach in the case of identical fer-
mions [57, 58]. The PIGS algorithm, in contrast, explicitly
anti-symmetrizes the paths if the system contains identical
fermions. If the system contains identical bosons, explicit
symmetrization operations are not needed provided the
ground state of the system where the bosons are replaced by
‘Boltzmann particles’ is the same as that of the system con-
taining bosons.

3. PIGS algorithm: general considerations

3.1. Basic concepts

This section rewrites equation (4) in a form amenable to eva-
luation by Monte Carlo techniques. The actual Monte Carlo
implementation is discussed in section 4. Using y ñ =t∣

t y- ñ( ˆ )∣Hexp T and y y tá = á -t∣ ∣ ( ˆ )HexpT , equation (4) reads

y t t y
y t t y

=
á - - ñ

á - - ñ
t

∣ ( ˆ ) ˆ ( ˆ ) ∣
∣ ( ˆ ) ( ˆ ) ∣

( )E
H H H

H H

exp exp

exp exp
. 6T T

T T

The denominator is commonly denoted by t( )Z ,

t y t y= á - ñ( ) ∣ ( ˆ ) ∣ ( )Z Hexp 2 . 7T T

To obtain a prescription for evaluating the operators in the
integrands, we project Ĥ and t-( ˆ )Hexp onto the position
basis. Formally, this amounts to inserting the identity

ò ñá =∣ ∣ ˆ ( )R R Rd 1, 8
R

where 1̂ denotes the unit operator, multiple times into
equation (6),

where

y t

t y

=á ñá - ¢ñá ¢ ¢¢¢ñ

´ á ¢¢¢ - ¢¢ñá ¢¢ ñ

∣ ∣ ( ˆ ) ∣ ∣ ˆ ∣
∣ ( ˆ ) ∣ ∣ ( )

F H H

H

R R R R R

R R R

exp

exp . 10
T

T

aux

We refer to t¢( )G R R, ; ,

t t¢ = á - ¢ñ( ) ∣ ( ˆ ) ∣ ( )G HR R R R, ; exp , 11

as the imaginary time evolution operator projected onto the
position basis or, in short, as the imaginary time evolution
operator or propagator. Using equation (11), we obtain

ò ò ò ò
ò ò ò y t t y

=
¢ ¢¢ ¢¢¢

á ñá - ¢ñá ¢ - ¢¢ñá ¢¢ ñ ¢ ¢¢
t

¢ ¢¢ ¢¢¢

¢ ¢¢
∣ ∣ ( ˆ ) ∣ ∣ ( ˆ ) ∣ ∣

( )E
F

H H

R R R R

R R R R R R R R R

d d d d

exp exp d d d
, 9

T T

R R R R

R R R

aux
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The normalization factor t( )Z , equation (7), plays a key
role in the simulations. For example, if t( )Z is known,
instead of evaluating equation (12), one can calculate the
energy expectation value tE directly,

t
t
t

= -
¶
¶

t ( )
( )

( )
( )E

Z
Z1
2

. 13

Equations (12) and (13) generate two distinct energy esti-
mators (see section 4.4 for details).

In the zero propagation time limit, i.e. for t = 0,
t= -ˆ ( ˆ )G Hexp becomes the identity operator. This implies

that the propagator is simply a δ-function in position space,

d¢ = - ¢( ) ( ) ( )G R R R R, ; 0 . 14

To propagate to finite imaginary time, one can solve the
Bloch equation [6]

t
¶
¶

= -
ˆ ˆ ˆ ( )G

HG, 15

which is obtained by taking the partial derivative of the
propagator with respect to τ. Equation (15) can be interpreted
as a diffusion equation in the imaginary time τ. For the
remainder of this section, we write the Hamiltonian Ĥ as a
sum of the kinetic energy operator K̂ and the potential energy
operator V̂ . Moreover, we assume that all particles have the
same mass m; this assumption, which can be readily relaxed,
simplifies the notation. If the kinetic energy operator K̂ is
zero, the propagator can be readily solved for. Similarly, if the
potential energy operator V̂ is zero, the propagator can also be
solved for. In this case, the solution Ĝ0 corresponds to free
particles diffusing in space (the subscript ‘0’ is used to indi-
cate that the corresponding Hamiltonian contains only kinetic
energy terms), i.e. Ĝ0 is a product of single-particle Gaus-
sians,

t pl t
l t

¢ = -
- ¢-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )G R R

R R
, ; 4 exp

4
, 16m

N

m
0

3 2
2

where lm is equal to � ( )m22 . Equation (16) shows that the
off-diagonal terms (terms for which ¹ ¢R R ) of G0, expressed
in the position basis, are non-zero. This shows explicitly that
the kinetic energy operator is non-local in position space. If V̂
and K̂ are both non-zero, then the propagator at finite τ is
known only for a few selected problems such as non-inter-
acting particles in a harmonic trap [59] and two particles with
zero-range interactions [45, 60–63]. In general, the N-particle
imaginary time evolution operator or propagator is unknown.
If it was known, the problem would be ‘trivial’.

The PIGS algorithm is based on the idea of writing the
imaginary time evolution operator for large τ as a product
over imaginary time evolution operators for small imaginary

time steps,

t t- = -( ˆ ) [ ( ˆ )] ( )H H nexp exp . 17n

Using equation (17) in equation (11) and inserting the unit
operator (equation (8)) -n 1 times, we obtain
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, ; , ;
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n

n n n

R R R
0

0 1 1 2

1 1 2 1

n1 2 1

The problem of evaluating the propagator at the desired
imaginary time τ has been converted to evaluating n propa-
gators at t n and integrating over -n 1 (potentially high-
dimensional) auxiliary coordinates -"R R, , n1 1. The key
points are that one can typically find a fairly accurate but
approximate short-time propagator for finite n (see
sections 3.2–3.5) and that the -n 1 associated ‘auxiliary’
integrations can be performed efficiently by Monte Carlo
techniques (see section 4).

To simplify the notation, the product t¢( )G R R, ;
t¢ ¢¢( )G R R, ; in the denominator of equation (12) is rewritten

as t t( ) ( )G GR R R R, ; , ;n n n0 2 . Each set of coordinates Rj
inserted in equation (18) is referred to as a ‘time slice’. There are
three ‘special’ time slices: the initial time slice R0, the middle
time slice Rn, and the final time slice R n2 . The initial and middle
time slices are connected by the propagator t( )G R R, ;n0 and
the middle and final time slices are connected by the propagator

t( )G R R, ;n n2 . Since both propagators are rewritten by insert-
ing -n 1 auxiliary time slices, the ‘expanded’ partition function
contains a total of +n2 1 time slices. The position vector rk j, of
the kth particle in the set of coordinates Rj is referred to as a
‘bead’. Thus, a single particle is represented by +n2 1 beads.
The propagator that ‘connects’ two consecutive time slices is
referred to as a ‘link’. The inverse temperature corresponding to
this link is tD , where t tD = n. The propagator that ‘con-
nects’ two consecutive beads is referred to as a ‘single-particle
link’. In addition, the set of all time slices "{ }R R, , n0 2 is
referred to as a configuration. The definitions are summarized in
table 1.

ò ò ò ò
ò ò ò

y t t y

y t t y
=

¢ á ¢ ¢¢¢ñ ¢¢¢ ¢¢ ¢¢ ¢ ¢¢ ¢¢¢

¢ ¢ ¢¢ ¢¢ ¢ ¢¢
t

¢ ¢¢ ¢¢¢

¢ ¢¢

( ) ( ) ∣ ˆ ∣ ( ) ( )

( ) ( ) ( ) ( )
( )E

G H G

G G

R R R R R R R R R R R R

R R R R R R R R R

, ; , ; d d d d

, ; , ; d d d
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T T

T T

R R R R

R R R
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Figure 1 shows the world-line representation of a single
particle in a one-dimensional harmonic trap. World lines
move in position space (x-axis) and imaginary time (y-axis).
Figures 1(a)–(d) show paths for =n 3, 5, 9, and 17 beads,
respectively. As n increases, the path is resolved in more
detail (each link is more accurate) and observables calculated
based on the sampled paths become more accurate.

Figure 2 depicts a single particle (the Hamiltonian only
contains the kinetic energy term) in two-dimensional space
[64]. Two consecutive beads (circles in figure 2) are con-
nected by a single-particle link (wiggly line in figure 2). The
kinetic energy is ‘carried’ by the propagators represented by
the links. The expression for the propagator in free space
reads (equation (16) for a single particle with position vector

= ( )x yr ,j j j1, 1, 1, )

t pl t
l t

= -
-

+
- +⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )

( )

G r r
r r

, ; 4 exp
4

.

20

j j m
j j

m
0 1, 1, 1

1 1, 1, 1
2

The action S [6],

t= - +[ ( )] ( )S G r rln , ; , 21j j0 1, 1, 1

of the single-particle link that connects the beads labeled r j1,
and +r j1, 1 reads

pl t
l t

= +
- +( ) ( ) ( )S

r r
ln 4

4
. 22m

j j

m

1, 1, 1
2

It can be seen that the action S has the same form as that of a
‘spring potential’ - +( )V r rs j j1, 1, 1 for two classical particles
with position vectors r j1, and +r j1, 1 connected via Hookeʼs law.
The propagator can thus be interpreted as being proportional to
the Boltzmann factor t-( )Vexp s of a classical system of
springs. Note that r j1, and +r j1, 1 in equations (20) and (22)
correspond to position vectors of consecutive beads for one
single particle while r j1, and +r j1, 1 in the classical isomorphism
correspond to position vectors of two different particles.

In addition to the propagators t( )G R R, ;n0 and
t( )G R R, ;n n2 , the partition function contains the trial functions

(or ‘weights’) y ( )RT 0 and y ( )RT n2 . For the single two-
dimensional particle in free space, y ( )rT 0 and y ( )rT n2 can be
interpreted as potentials that are felt by the first and last particle
of the chain of classical particles. Thus, we can interpret the
PIGS simulation of a single particle as a simulation of a chain of
classical particles connected by springs (or a polymer with
nearest neighbor interactions) and two external forces that act
on the particles at the ends of the chain. The stiffness of the
springs is determined by tD1 , i.e. by the inverse of the
imaginary time step associated with the links.

The following two sections introduce two different
approaches for approximating the short-time propagator,
namely the Trotter formula and the pair product approximation.

3.2. Trotter formula

One way to approximate the short-time propagator is to use
the Trotter formula [65]. For sufficiently small time steps tD ,
the kinetic energy contribution K̂ and the potential energy
contribution V̂ to the propagator can be split,

't t t t-D + = -D -D + D[ ( ˆ ˆ )] ( ˆ ) ( ˆ ) ( )
( )

K V K Vexp exp exp ,
23

2

where the notation ' tD( )2 indicates that the leading-order
error scales, in general, as tD to the power of 2. More spe-
cifically, by Taylor expanding the exponentials, one can

Figure 1. Schematic world-line representation for a single particle
with mass m in a one-dimensional harmonic trap with angular
trapping frequency ω. Panels(a)–(d) show paths for 3, 5, 9, and 17
time slices, respectively.

Figure 2. Isomorphism between path integrals for a single free
particle in two-dimensional space and classical particles connected
by springs. In the path integral interpretation, the circles and wiggly
lines depict the beads and (single-particle) links of a single particle,
respectively. In the classical mechanics formulation, the circles and
wiggly lines depict particles and springs, respectively. The position
vector of the particle is denoted by r j1, , where j indicates the
imaginary time index ( =j 1, 2, and 3).

Table 1. PIGS terminology used in this article. Columns 1–3 show
the term, symbol, and explanation, respectively.

Bead rk j, A single coordinate of the kth
particle at the jth imaginary
time index

Time slice Rj A set of beads at the jth
imaginary time index

Configuration "{ }R R, , n0 2 The set of all time slices

Link tD+( )G R R, ;j j 1 The propagator connecting
two consecutive time slices

Single-parti-
cle link

tD+( )G r r, ;k j k j, , 1 The propagator connecting
two consecutive beads
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prove that the leading-order error is tD [ ˆ ˆ ]K V, 22 , where
[ ˆ ˆ ]K V, is the commutator between K̂ and V̂ , =[ ˆ ˆ ]K V,

-ˆ ˆ ˆ ˆKV VK . In the tD 0 limit (this corresponds to the
insertion of infinitely many time slices, i.e. the ¥n limit),
the Trotter formula becomes exact. Since n cannot be infi-
nitely large in practice, one performs calculations for different
n and extrapolates the observables of interest to the infinite n
limit.

Importantly, the Trotter formula can be extended to
higher orders. We can readily adopt a ' tD( )3 scheme by
further splitting the kinetic energy term or the potential energy
term,

'

t t t

t t

-D + = -D -D

´ -D + D

[ ( ˆ ˆ )] ( ˆ ) ( ˆ )
( ˆ ) ( ) ( )

K V K V

K

exp exp 2 exp

exp 2 243

or

'

t t t

t t

-D + = -D -D

´ -D + D

[ ( ˆ ˆ )] ( ˆ ) ( ˆ )
( ˆ ) ( ) ( )

K V V K

V

exp exp 2 exp

exp 2 . 253

In practice, equation (25), which is accurate up to second
order [the error is' tD( )3 ], is easier to use than equation (24).
In position space, equation (25) reads

'

t t t

t t

¢ D = -D -D ¢

´ ¢ D + D

( ) [ ( ) ] [ ( ) ]
( ) ( )

( )

G V V

G

R R R R

R R

, ; exp 2 exp 2

, ; ,

26
0

3

where G0 (see equation (16)) is the propagator that accounts
for the kinetic energy term.

One can reach successively higher accuracy by the
repeated use of the Baker–Campell–Hausdorff formula (see,
e.g., [66])

� � = ( )ˆ ˆ ˆe e e , 27A B C

where

� �

�

� �'

= + + +

+

- +

ˆ ( ˆ ˆ) [ ˆ ˆ] ([ ˆ [ ˆ ˆ]]

[ ˆ [ ˆ ˆ ]])
[ ˆ [ ˆ [ ˆ ˆ]]] ( ) ( )

C A B A B A A B

B B A

B A A B

1
2

,
1

12
, ,

, ,
1
24

, , , . 28

2

3

4 5

Using equations (27) and (28) twice, we obtain [67]

� � � = ( )ˆ ˆ ˆ ˆe e e e , 29B A B D

where

� �

� �'

= + -

+ +

ˆ ( ˆ ˆ) [ ˆ [ ˆ ˆ ]]

[ ˆ [ ˆ ˆ]] ( ) ( )

D A B A B A

B A B

2
1
6

, ,

1
6

, , . 30

3

3 5

Applying equations (29) and (30) twice to

t t t

t t

-D -D -D

´ -D -D

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˜

ˆ ˆ
( )

V K V

K V

exp
6

exp
2

exp
2
3

exp
2

exp
6

, 31

we can check that the fourth-order factorization [67]

'

t t t

t t t

t

-D + = -D -D

´ -D -D -D

+ D

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

[ ( ˆ ˆ )]
ˆ ˆ

˜ ˆ ˆ

( ) ( )

K V
V K

V K V

exp exp
6

exp
2

exp
2
3

exp
2

exp
6

, 325

where Ṽ is given by t+ Dˆ [ ˆ [ ˆ ˆ ]]V V K V, , 482 , holds. The
term [ ˆ [ ˆ ˆ ]]V K V, , , in position space, can be simplified to
� å =( ) ∣ ∣m Vi

N
i

2
1

2, where the gradient i in three spatial
dimensions is given by

=
¶
¶

+
¶
¶

+
¶
¶

ˆ ˆ ˆ ( )x
x

y
y

z
z

, 33i i
i

i
i

i
i

with x̂i, ŷi, and ẑi denoting unit vectors that point in the xi, yi,
and zi directions, respectively. The term ∣ ∣Vi

2 corresponds to
the square of the force on the ith particle. Care needs to be
taken in evaluating the derivatives, since V usually contains a
double sum over two-body potentials or even a triple sum
over three-body potentials. In most cases, the evaluation of
the force terms cannot be simplified analytically, implying
that the evaluation of double commutators involves double or
triple sums over the total number of particles. This makes the
numerical evaluation comparatively expensive. Note that the
exponentials in equation (32) that contain the potential energy
can have different numerical factors. In addition,
equation (32) is not the only form of the fourth-order fac-
torization [67, 68].

Using the Trotter formula, the isomorphism between a
single quantum particle in free space and the classical spring
system can be extended to multiple quantum particles with
interactions. Figure 3 depicts two interacting particles in two-
dimensional space (it is assumed that the particles do not feel
a single-particle potential).

In this case, the propagator for the link that connects the
beads labeled by r j1, , +r j1, 1, r j2, , and +r j2, 1 reads (see

Figure 3. Isomorphism between path integrals for two interacting
particles in two-dimensional space and classical particles connected
by springs. In the path integral interpretation, the circles and wiggly
lines depict the beads and links of a single particle, respectively, and
the dotted lines depict the two-body interaction between beads with
the same imaginary time index. In the classical mechanics
interpretation, the circles and wiggly lines depict particles and
springs, respectively, and the dotted lines depict the two-body
interaction between selected classical particles. The position vector
of the kth particle at the jth imaginary time index j is denoted by rk j, .
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equation (25))

t

t t

D

=
´ D D

t t

+ +

-D - -D -

+ +

+ +

({ } { } )

( ) ( ) ( )
( ) ( )

G

G G

r r r r

r r r r

, , , ;

e e
, ; , ; , 34

j j j j

V V

j j j j

r r r r

1, 2, 1, 1 2, 1

2 2

0 1, 1, 1 0 2, 2, 1

j j j j2b 1, 2, 2b 1, 1 2, 1

where V2b denotes the two-body interaction potential between
particles 1 and 2 and tD+( )G r r, ;k j k j0 , , 1 the single-particle
propagator of the kth particle (see equation (20)). As in
figure 2, two consecutive beads for the same particle (e.g., the
circles labeled by r j1, and +r j1, 1 in figure 3) are connected by
single-particle links (wiggly lines in figure 3) that represent
the propagators G0. Since the two-body interaction potential
(dotted lines in figure 3) is diagonal in position space (see the
exponentials on the right hand side of equation (34)), it
connects beads of different particles with the same index, i.e.
it connects r1,1 and r2,1, r1,2 and r2,2, and r1,3 and r2,3 (or, in
general, it connects rk j, and +rk j1, ). Each particle in the PIGS
simulation corresponds to +n2 1 classical particles con-
nected by springs. Classical particles associated with different
chains interact only if they have the same bead index.

3.3. Pair product approximation

To introduce the pair product approximation, we assume for
simplicity that the potential energy operator V̂ can be written
as a sum of two-body terms,

å å= -
=

-

= +

( ) ( ) ( )V VR r r , 35
k

N

l k

N

k l
1

1

1
2b

i.e. we assume for now that single-particle and three- and
higher-body forces are absent. Under these assumptions, the
short-time propagator can be evaluated using the pair product
approximation [6]. It is convenient to define the two-body
kinetic energy operator K̂kl for the kth and lth particle in
position space,

�
= - -

ˆ ( )K
m

. 36kl r r

2
2

k l

The relative non-interacting and interacting two-body
Hamiltonian are K̂kl and + -ˆ ˆ ( )K V r rkl k l2b , respectively. The
pair product approximation considers two-body correlations
explicitly, but not higher-body correlations, and writes the
many-body propagator as a product over single-particle pro-
pagators and two-body propagators,

t t

t

¢ D » ¢ D

- ¢ - ¢ D
<

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

¯ ( ) ( )

G G

G

R R R R

r r r r

, ; , ;

, ; , 37
k l

N

k l k l

0

rel

where Ḡ rel,

t

t
t

- ¢ - ¢ D

=
á - -D + - ¢ - ¢ñ

á - -D ¢ - ¢ñ

¯ ( )
∣ [ ( ˆ ˆ ( ))] ∣

∣ ( ˆ ) ∣ ( )

G

K V

K

r r r r

r r r r r r
r r r r

, ;

exp

exp
,

38

k l k l

k l kl k l k l

k l kl k l

rel

2b

is the reduced pair propagator. The denominator of the
reduced pair propagator coincides with the known relative
non-interacting two-body propagator. Thus the only ‘non-

trivial input’ is the relative propagator of the interacting two-
body system. One can readily see that the pair product
approximation is exact for two particles for any propagation
time because the center-of-mass and relative degrees of
freedom separate in this case. In some cases such as for the
two-body zero-range interaction potential, the exact reduced
pair propagator is known analytically [60–63]. In other cases
such as for the two-body hardcore potential, an approximate
reduced pair propagator is known analytically in closed form
[69, 70]. If the reduced propagator is not known analytically,
one can perform a partial wave decomposition and obtain a
numerical representation of the reduced two-body propa-
gator [6].

In dilute gases or weakly bound droplets, the interparticle
spacing is typically so large that two-body collisions dom-
inate over three- and higher-body collisions. The leading-
order error of the pair product approximation is determined by
the importance of three-body correlations. For two-comp-
onent equal-mass Fermi gases with two-body zero-range
interactions, three-body correlations are suppressed by the
Pauli exclusion principle. For this system, we found that the
pair product approximation provides an extremely good
description of the propagator. Specifically, we obtain accurate
simulation results for a small number of beads (see section 5
for details). For bosons, in contrast, three-body correlations
can be significant. As a consequence, the pair product
approximation is not as efficient as for two-component fer-
mions and simulations typically employ a large number of
beads (‘large’ in this context means about two orders of
magnitude more number of beads as in the simulations for
fermions [45]).

To illustrate the pair product approximation, we cannot
use the classical isomorphism because the kinetic and
potential energy contributions are mixed. One needs to
evaluate the single-particle propagator, which can be repre-
sented by springs as in figures 2 and 3. However, one also
needs to evaluate the reduced two-body propagator, which
connects two consecutive beads of one particleʼs path with the
same consecutive beads of another particleʼs path. These
‘four-bead connections’ do not have a simple classical analog.

3.4. Comparison of the two approximations

This section discusses the advantages and disadvantages of
approximating the short-time propagator with the help of the
Trotter formula and the pair product approximation.

In the Trotter formula based scheme, the kinetic and the
potential energy terms are treated separately. Inserting the
identity ò ñá =∣ ∣ ˆR R Rd 1

R
, equation (8), multiple times into

equations (25) or (32), it can be seen that the potential energy
is diagonal in position space. This means that one can directly
evaluate the potential energy term at each time slice. The
kinetic energy term contains off-diagonal terms and needs to
be evaluated at each link instead of at each time slice.
Nevertheless, since the kinetic energy term corresponds to a
simple Gaussian, the sampling of the kinetic energy piece of
the propagator can, in general, be performed efficiently (see
section 4.3.2 for details).
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Even though the Trotter formula can formally be gen-
eralized to expressions that are accurate to order
t tD D ", ,5 6 [71, 72], many of these expressions are of

limited use in practice because they contain either commu-
tators that involve rather complicated expressions or terms
that correspond to negative imaginary time, which are not
normalizable. There exists a multi-product expansion for the
propagator [72]; however, applications thereof are still rare
[73]. Thus present-day algorithms mostly employ Trotter
formula based decompositions that are accurate to order tD 4.

In the pair product approximation, the two-body reduced
propagator contains kinetic energy and potential energy
contributions. This means that the reduced two-body propa-
gator has to be evaluated at each link. Because the reduced
two-body propagator is, in general, not a simple Gaussian, the
sampling is typically less efficient than in the case where the
Trotter formula is used. Furthermore, as discussed in
section 4.6, the evaluation of the permutations is computa-
tionally more involved.

Our discussion of the pair product approximation
assumed that the potential energy can be written as a sum
over two-body terms. If the Hamiltonian contains one-, three-,
or higher-body potential energy terms, one can include them
by combining the Trotter formula and the pair product
approximation. To this end, one first splits the propagator into
two terms using the Trotter formula. The first term contains
the kinetic energy operator and the two-body interactions
while the second term contains all other potential terms. One
then applies the pair product approximation to the first term.
In this approach, it is most convenient to use the second-order
Trotter formula for two reasons. First, if a higher-order Trotter
formula was used, one would need to evaluate the commu-
tator between the one-, three- and higher-body potential terms
and the two-body potential terms For the two-body zero-range
interactions considered in section 5 this is a rather challenging
task. Second, both the second-order Trotter formula and the
pair product approximation yield errors for the energy that
scale quadratically with the time step tD . While the error in
the pair product approximation tends to be smaller than that
associated with the pair product approximation, ultimately it
is the scaling with tD that determines the accuracy and use of
the fourth-order Trotter formula typically leads only to a small
overall improvement.

From our perspective, the pair product approximation has
one key advantage: it can deal with a class of two-body
potentials that the Trotter formula based scheme cannot deal
with (at least no such treatment is known to us). For example,
the two-body hardcore and zero-range potentials contain infi-
nities and can thus not be treated by the Trotter formula based
scheme. However, the infinities can, as discussed in the next
section exemplarily for the two-body zero-range potential, be
dealt with analytically in the pair product approximation.

3.5. Propagator for two-body zero-range interactions

As alluded to in the previous section, two-body zero-range
interactions can be incorporated into continuum Monte Carlo

simulations through the pair product approximation [42,
44–46], which employs the relative propagator Ḡ rel (see
equations (37) and (38)). In what follows, we limit our dis-
cussion to three spatial dimensions. To determine Ḡ rel, one
considers the relative Hamiltonian H rel for two particles
interacting through the regularized zero-range Fermi–Huang
pseudopotential ( )V rF [74] in free space,

�
m

= - + ( ) ( )H V r
2

, 39r
rel

2
2

F

where

�p
m

d=
¶
¶

( ) ( ) ( )( )V r
a

r
rr

2
. 40s

F

2
3

Here, μ denotes the two-body reduced mass, r the inter-
particle distance vector, and as the s-wave scattering length.
The regularization operator ¶ ¶( )r r in equation (40) ensures
that the Hamiltonian is well-behaved. Without this operator,
the two-body coupling constant would have to be renorma-
lized. With the regulator, however, the coupling strength is
uniquely determined and given by �p ma2 s

2 .
The reduced (or normalized) relative propagator

corresponding to the Hamiltonian given in equation (39) reads
[61, 63]

�
�

�

t
t

m
m q

t

pt
m

¢ = +
¢

-
¢ +

´ +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

¯ ( ) ( )

( ) ( ) ( )

G
rr

rr

a
v v

r r, ; 1 exp
1 cos

1
2

erfc exp , 41
s

rel
2

2

2

where q = ¢ ¢· ( )rrr rcos and �t m= + ¢ -[ ( )]v r r as
2

�t m2 2 . For = ¥∣ ∣as , the length scale as drops out of the
expression for the propagator and equation (41) simplifies to

�
�

t
t

m
m q

t
¢ = +

¢
-

¢ +⎛
⎝⎜

⎞
⎠⎟¯ ( ) ( ) ( )G

rr
rr

r r, ; 1 exp
1 cos

. 42rel
2

2

Importantly, the reduced relative propagator diverges when r or
¢r approach zero. These divergencies have implications for the
Monte Carlo sampling of the paths. As discussed in detail in
section 4.3.3, moves have to be designed carefully such that
detailed balance is fulfilled. For example, while Ḡ rel diverges for
r and ¢r 0, the probability to find two particles at vanishing
interparticle distance does not diverge. The treatment of systems
with two-body hardcore interactions is similar in spirit to that
detailed here for two-body zero-range interactions.

Adding the spherically symmetric harmonic confining
potential mw=( )V r r 2trap

2 2 for the relative degrees of free-
dom to the Hamiltonian H rel given in equation (39) and
assuming that as is infinitely large, the reduced relative pro-
pagator t¢¯ ( )G r r, ;rel reads

�
�

t

t w
q

t w

¢ =

+
¢

-
¢ +⎛

⎝⎜
⎞
⎠⎟ ( )

¯ ( )

( ) ( )
( )

43

G

a

rr
rr

a

r r, ; 1

2
sinh exp

1 cos

2 sinh
,

rel

ho
2

ho
2

where � w= ( )a mho . In the limit that the angular trapping
frequency ω goes to zero, equation (43) reduces to
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equation (42). Expression(43) is used in section 5 to treat
harmonically trapped two-component Fermi gases with two-
body zero-range interactions at unitarity using the pair pro-
duct approximation.

4. Monte Carlo techniques and the PIGS algorithm

Throughout this section we assume that the trial function
y ( )RT is given and that its value can be determined for any
set of coordinates R. The functional form of y ( )RT depends
sensitively on the system under study. The choice of y ( )RT

and the dependence of the PIGS results on y ( )RT will be
discussed in section 5 for harmonically trapped two-comp-
onent Fermi gases.

4.1. General sampling scheme: importance sampling

Equation (19) writes the long-time propagator as a high-
dimensional integral over a product of short-time propagators.
This implies that the evaluation of the normalization factor

t( )Z is a high-dimensional integral. This section discusses the
Monte Carlo sampling of this high-dimensional integral over

"{ }R R, , n0 2 (there are ´ + ´( )n N3 2 1 independent
coordinates if we are considering three spatial dimensions).
To proceed, we write t( )Z explicitly in terms of the short-
time propagator,

ò òt p= " " "( ) ( ) ( )Z R R R R, , d d , 44n n
R R

0 2 0 2
n0 2

where

p y t t

t y

= D D

´ ´ D-

"

"

( ) ( ) ( ) ( )
( ) ( )

( )

G G

G

R R R R R R R

R R R

, , , ; , ;

, ; .

45

n T

n n T n

0 2 0 0 1 1 2

2 1 2 2

To simplify the notation, we denote the configuration
"{ }R R, , n0 2 by x and the probability distribution

p "( )R R, , n0 2 by p ( )x . The notation of these and other
quantities is summarized in tables 1 and 2. The expectation value

á ñO of an arbitrary observable O can be written as

ò

ò

p

p
á ñ =

( ) ( )
( )

( )O
w x x x

x x

d

d
, 46x

x

where the integration goes over ´ + ´( )n N3 2 1 coordinates
and the weight function ( )w x needs to be determined, as will be
discussed in section 4.4, for each observable. To see the struc-
ture of á ñO more clearly, we rewrite equation (46) as

òá ñ = ( ) ( ) ( )O w px x xd , 47
x

where the probability density function ( )p x is defined as

ò
p
p

=
¢ ¢

¢

( ) ( )
( )

( )p x
x
x xd

. 48
x

In contrast to the probability distribution p ( )x , the probability
density function ( )p x is normalized; ( )w x and ( )p x represent
the weight contributed to the observable by the configuration x
and the normalized probability to be in the configuration x,
respectively. Equation (47) provides the basis of importance
sampling: configurations are not blindly distributed uniformly in
space but instead are distributed according to ( )p x . The
advantage of importance sampling is that most computer time is
used to sample configurations that are physically relevant and
little time to sample configurations that do not contribute sig-
nificantly to á ñO .

The general idea of the PIGS algorithm is to generate
configurations x according to ( )p x and to use the generated
configurations to accumulate the weight functions ( )w x for a
set of observables. Thus, it is crucial to have correct and
efficient sampling schemes that explore the full configuration
space with a relatively high acceptance ratio and without
getting stuck around a local minimum. Section 4.2 reviews
the basics of selected Monte Carlo methods, which are then
used in the subsequent sections.

4.2. Some background on Monte Carlo methods

This section discusses how to update or generate configura-
tions using the Metropolis algorithm. A Markov process is
uniquely defined by the transition probability ¢( )P x x to
go from configuration x to configuration ¢x . The Metropolis
algorithm satisfies the detailed balance condition [7]

p p¢ = ¢ ¢( ) ( ) ( ) ( ) ( )P Px x x x x x , 49

which states that the flow of probability from x to ¢x is equal
to that from ¢x to x. This means that there is no net flow of
probability. The Metropolis algorithm needs to ensure ergo-
dicity of the Markov process. If the process is ergodic, the
Markov chain (i) returns to any previously generated con-
figuration x after a sufficiently long simulation time and (ii) is
not periodic (a Markov chain of ¢ ¢ "{ }x x x x, , , , , e.g., is
periodic). The ergodicity ensures that the probability dis-
tribution p ( )x gets sampled fully. For example, as discussed
in [75], if we use the traditional scheme of treating the per-
mutations [6], for a two-component Fermi gas with zero-
range interactions, the Markov process ends up with a con-
figuration in which all particles sit on top of each other and

Table 2. Definitions of Monte Carlo sampling terminology used in
this article. Columns 1–3 show the symbol, name, and related
equation number, respectively. The configuration x is defined
as = "{ }x R R, , n0 2 .

p ( )x Probability distribution Equation (45)
( )p x Probability density

function
Equation (48)

( )w x Weight function (obser-
vable specific)

Equations (46) and (47);
section 4.4

¢( )P x x Transition probability Equation (49)
� ¢( )x x Proposal distribution

(selected by simulator)
Around equations (49)

and (50)
� ¢( )x x Acceptance distribution Equation (50)
y ( )RT Trial function (selected by

simulator)
Equation (1)
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the configuration never returns to the original configuration x.
This means that ergodicity is violated and that the Markov
process does not generate samples according to ( )p x . This
renders the sampled configurations meaningless. We note,
however, that while the detailed balance condition together
with the ergodicity guarantees that the equilibrium distribu-
tion coincides with the desired probability distribution p ( )x ,
there exist other Monte Carlo methods that do not satisfy the
detailed balance condition but yield an equilibrium distribu-
tion that coincides with the desired probability distribution
p ( )x [76].

The Metropolis algorithm consists of two steps [7]: (i) the
generation of a proposed configuration (or move) and (ii) the
acceptance or rejection of the proposed configuration (or
move). The combination of (i) and (ii) leads to a new con-
figuration. Starting from the configuration x, we propose a
new configuration ¢x according to a proposal distribution
� ¢( )x x and accept (the new configuration would be ¢x ) or
reject the new configuration (the new configuration would be
x) according to the acceptance distribution � ¢( )x x . This
implies that ¢( )P x x is given by � �¢ ¢( ) ( )x x x x .
The Metropolis algorithm chooses � ¢( )x x such that [7]

�
�
�

p
p

¢ =
¢ ¢

¢

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( )
( )x x

x x x
x x x

min 1, . 50

We verify that the detailed balance condition (equation (49))
is satisfied in the following. If �p ¢ ¢( ) ( )x x x is smaller than

�p ¢( ) ( )x x x , we obtain from equation (50) that

�p
p

¢ =
¢ ¢( ) ( ) ( )

( )
( )P x x

x x x
x

51

and

�¢ = ¢( ) ( ) ( )P x x x x . 52

Plugging the right-hand sides of equations (51) and (52) into
equation (49), we confirm that equation (49) holds. If

�p ¢ ¢( ) ( )x x x is larger or equal to �p ¢( ) ( )x x x , it can be
checked similarly that equation (49) holds. Thus, we have
shown that detailed balance is fulfilled.

A key task is to design proposal distributions � ¢( )x x
that ensure the complete and, ideally, efficient exploration of the
entire configuration space. In most cases, efficient simulation
schemes are achieved if more than one proposal distribution
(and hence type of move) is utilized. As discussed more in the
next section, the proposal distribution might be designed based
on the knowledge of the non-interacting system (see, e.g.,
section 4.3.2) or based on knowledge of certain limiting beha-
viors of the interacting system (see, e.g., section 4.3.3).

In practice, the acceptance ratio A, i.e. one minus the
fraction of rejected moves, should be monitored (note, A is a
number and not an x- and ¢x -dependent function). The accep-
tance ratio A for Metropolis sampling is different from the
acceptance ratio encountered in the rejection sampling. In the
rejection sampling, a rejected configuration does not lead to a
new configuration. In the Metropolis sampling, in contrast,
a rejected configuration does lead to a new configuration. When
a configuration is rejected, the old configuration becomes the
new configuration. For most of the updates (i.e. the generation of

proposed new configurations), the acceptance ratio should not be
too large and not be too small. A high acceptance ratio typically
implies that the deviation between the old and new configura-
tions is, on average, small. This means that the configuration
space is explored comparatively slowly. A low acceptance ratio,
in contrast, means that the Markov chain contains many identical
configurations; again, typically this means that the configuration
space is explored comparatively slowly. Both cases can result in
large correlations of the sample and should be avoided. As a rule
of thumb, the acceptance ratio should lie roughly between 30%
and 50% [77].

4.3. Moves

The previous section outlined the basics of the Metropolis
algorithm. This section discusses the PIGS moves that are
used to update the configurations. For all moves, the proposed
new configuration ¢x is chosen based on the proposal dis-
tribution � ¢( )x x and accepted/rejected based on the
acceptance distribution � ¢( )x x . Once � ¢( )x x is spe-
cified, � ¢( )x x follows from equation (50). This section
discusses three different moves. The ‘naive move’ and the
‘wiggle move’ are ‘all purpose’ moves, which have proven to
be useful for nearly all systems. In some cases, the use of
these two types of moves alone does not lead to an efficient
(or even correct) exploration of the configuration space. For
systems with two-body zero-range interactions, e.g., the ‘pair
distance move’ is needed. In general, the simulator decides on
the frequency with which the individual moves are used. The
optimal ratio can be found empirically from the performance
of the simulation itself or through the implementation of some
sort of learning algorithm.

The list of moves discussed below does not include a
‘permutation move’, i.e. the stochastic sampling of the permu-
tations is not discussed. The reason for this is twofold. If the
system contains identical bosons, the ground state wave function
is typically identical to that of Boltzmann particles, eliminating
the need for an explicit symmetrization. If the system contains
identical fermions, we employ the on-the-fly anti-symmetriza-
tion scheme discussed in section 4.6, which is particularly useful
if two-body zero-range interactions are employed.

The moves employed in the PIGS algorithm have much
in common with the moves employed in the finite-temper-
ature path integral Monte Carlo algorithm. As already dis-
cussed, one difference is that the PIGS algorithm contains the
trial function yT while the finite-temperature path integral
Monte Carlo algorithm does not. Quite generally, whether a
move depends on the trial function yT or not depends on
whether or not the beginning time slice R0 or the ending time
slice R n2 are being updated. In the implementations of the
moves discussed below, the wiggle move does not depend on
yT , and the naive move and the pair move may depend on yT

(it depends on whether or not the randomly selected time slice
to be updated is the 0th or n2 th time slice). It should be noted,
though, that the moves can, in principle, be implemented in a
variety of ways, i.e. slightly different proposal distributions
� ¢( )x x might be used in different implementations and be
referred to by the same move name.
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4.3.1. Naive move. The simplest move (the naive move)
consists of shifting the position vector rold of a single bead by
dr, where dr is drawn uniformly from the interval
-D D[ ]r r, . The basic idea behind this move is that the
propagator is a smooth function of x and that a small change
in x does not introduce a huge change in the probability
distribution p ( )x . The size Dr2 of the interval (if we are
simulating a three-dimensional system, then the interval
corresponds to a cube) can be adjusted such that the
acceptance ratio of the proposed new position vector is
around 50%. The proposal distribution � ¢( )x x is equal to
a constant if the new bead lies in the interval

- D + D[ ]r r r r, ;old old otherwise, � ¢( )x x is equal to 0.
Following equation (50), the move is accepted according to

�
p
p

¢ =
¢⎛

⎝⎜
⎞
⎠⎟( ) ( )

( )
( )x x

x
x

min 1, . 53

Importantly, one cannot choose an ‘unbalanced’ interval like
�- D D[ ]r r, , where � < 1, since the detailed balance

condition, equation (49), is not satisfied in this case. The
reason is that it is possible to go from r to + Dr r in one
move but that it is impossible to go from + Dr r to r in
one move.

The algorithm for the naive move can be summarized as
follows. (i) Let the current configuration be = "{ }x R R, , n0 2 .
Randomly select a particle index k and a time slice index j,
where j can take any value from 0 to n2 . Set =r rk jold , and
calculate the old probability distribution p p= "( )R R, , nold 0 2 .
(ii) Generate a new position d= +r r rnew old , where dr is
drawn uniformly from the interval -D D[ ]r r, . Define =R j

new

- +" "{ }r r r r r, , , , , ,j k j k j N j1, 1, new 1, , and calculate the new
probability distribution p p= - +"(R R R R, , , ,j j jnew 0 1

new
1

" )R, n2 . (iii) Calculate the ratio p pnew old. If this ratio is
larger than a random number drawn uniformly from 0 to 1,
accept the move and set =r r ;k j, new otherwise, reject the move

and set =r rk j, old (i.e. do not change rk j, ). Figure 4 illustrates the
naive move for a single particle in a one-dimensional harmonic
trap. It can be seen that the proposed move involves only
one bead.

Although the naive move attemps to change only one
bead at a time, whether the proposed move gets accepted or
rejected depends, in principle, on all the beads, i.e. the
coordinates of all particles at all time slices, since the
acceptance/rejection depends on the ratio p pnew old. How-
ever, because the probability distribution p ( )x is a product
over propagators and the trial function yT evaluated at the
two ends (equation (45)), the only terms that contribute to the
ratio p pnew old are the propagators tD-( )G R R, ;j j1 and

tD+( )G R R, ;j j 1 and, if j equals 0 or n2 , the trial function
y ( )RT 0 or y ( )RT n2 . If one uses the second-order Trotter
formula (equation (26)), which treats the potential and kinetic
energy terms separately, the terms that contribute to

tD-( )G R R, ;j j1 and tD+( )G R R, ;j j 1 are the potential
energy term t-D[ ( )]V Rexp j and the kinetic energy terms

tD-( )G r r, ;k j k j0 , 1 , and tD+( )G r r, ;k j k j0 , , 1 .
The caveat of the naive move is that the correlation

length is typically large. In the best case scenario (i.e. in the
case where all beads of all particles are considered exactly
once and all proposed moves are accepted), + ´( )n N2 1
moves are needed to generate a configuration in which every
bead differs from the starting configuration. Thus, we
calculate observables for every a ´ + ´( ( ) )n N2 1 th con-
figuration, where α is a constant greater than 1 that is adjusted
to ensure that the observables are calculated from configura-
tions with small correlations. In practice, we find that α lies
between 2 and 20 for the applications considered in this
review.

4.3.2. Wiggle move. The wiggle move uses the non-
interacting propagator to design the proposal distribution
� ¢( )x x . Since the non-interacting propagator is a product
of simple Gaussians for particles in free space (equation (16))
and for particles confined in a harmonic trap [45, 59], one can
generate configurations efficiently with 100% acceptance
ratio using the Box–Muller transformation [78] or with finite
acceptance ratio using the Marsaglia polar method (the
acceptance ratio is around 80%) [79] or the Ziggurat
algorithm (the acceptance ratio is around 98%) [80, 81]. If
the difference between the propagator of the system to be
simulated and the non-interacting propagator is small, the
acceptance ratio for a move generated based on the
propagator of the non-interacting system is high. Despite
the large acceptance ratio, the correlation between
consecutive configurations is, in general, small. In the non-
interacting limit, the acceptance ratio is exactly 1.

Depending on the number of beads changed simulta-
neously, the wiggle move is a single-bead move or a multi-
bead move. The single-bead version of the wiggle move
randomly selects a particle index k and a time slice index j
( >j 0 and <j n2 ). Since the beads to be moved exclude the
time slices 0 and n2 , the wiggle move does not involve the
trial function yT . We denote the new proposed position vector
by rk j,

new (how to choose rk j,
new is discussed below) and define

Figure 4. Illustration of the naive move for a single particle in a one-
dimensional harmonic trap for n=32 beads. The black circles
depict the old bead positions. The red square shows the proposed
bead position for the 16th time slice index. It can be seen that only
two links (namely the link involving the 15th and 16th beads and
that involving the 16th and 17th beads) are changed.
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= - +" "( )R r r r r r, , , , , ,j j k j k j k j N j
new

1, 1, ,
new

1, , . The old and
proposed configurations read

= "{ } ( )x R R, , 54n0 2

and

¢ = - +" "{ } ( )x R R R R R, , , , , , 55j j j n0 1
new

1 2

respectively. We choose � ¢( )x x according to the propa-
gator G0 (equation (16)) of the non-interacting system without
confinement (the proposal distribution based on the propa-
gator of the non-interacting harmonic oscillator Hamiltonian
can be treated similarly),

�
l t

¢ = -
- + -

D
- +⎛

⎝⎜
⎞
⎠⎟( )

( ) ( )

( )

x x
r r r r

exp
4

56

k j k j k j k j

m

,
new

, 1
2

,
new

, 1
2

or, rearranging the exponent,

�
l t

l t

¢ = -
-

D

´ -
- +

D

- +

- +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

[ ( ) ]
( )

x x
r r

r r r

exp
8

exp
2

2
. 57

k j k j

m

k j k j k j

m

, 1 , 1
2

,
new

, 1 , 1
2

The first exponential on the right-hand side of equation (57) is
independent of rk j,

new and can be interpreted as a normalization
constant. The second exponential on the right-hand side of
equation (57) is equal to a Gaussian whose mean value is given
by the midpoint of the -( )j 1 th and the ( j+ 1)th bead of the
kth particle and whose variance is l tDm . Thus, rk j,

new can be
generated using the Box–Muller transformation, the Marsaglia
polar method, or the Ziggurat algorithm discussed above. If we
use the second-order Trotter formula, the acceptance probability
� ¢( )x x (equation (50)) takes a fairly simple form since a
large number of terms (those not involving time slice j and
those not involving particle k) in the ratio p p¢( ) ( )x x can be
cancelled. If the pair product approximation is used, the
evaluation of � ¢( )x x is more involved since fewer terms in
the ratio p p¢( ) ( )x x can be cancelled due to the fact that the
kinetic energy and the potential energy terms are ‘linked’ in the
pair product approximation.

The single-bead version of the wiggle move can be
generalized to multiple consecutive beads. Since the multi-bead
move leads to a deformation of a segment of the path, the move
is called ‘wiggle move’. In what follows, our discussion is
guided by [9]. Instead of a single bead of the path we propose to
change a path segment consisting of multiple beads according to
a proposal distribution� ¢( )x x that generalizes the expression
given in equation (57). We denote the time slice indices of the
two ends that are unchanged by j and j+s, where s is an integer
power of 2; the condition for s allows one, as will become clear

below, to organize the move into ‘levels’. The corresponding
position vectors are rk j, and +rk j s, , where >s 0. Note that the
wiggle move does not explicitly involve the trial function yT

since the path segment to be changed has to be continuous. This
means that the zeroth bead can be at the beginning of the
segment but nowhere else and that the n2 th bead can be at the
end of the segment but nowhere else. In the finite-temperature
path integral Monte Carlo approach, in contrast, any path
segment can be considered, provided the path is closed.

We now outline the multi-bead move, both without and
with ‘staging’. The algorithm without staging is less efficient
but can be employed in connection with the Trotter formula
and the pair product approximation. The staging version can
only be used in connection with the Trotter formula. Both
multi-bead move versions generate a proposed new path
segment + + -"{ }r r, ,k j k j s, 1

new
, 1

new that is completely independent
of the old path segment + + -"{ }r r, ,k j k j s, 1 , 1 . Here, j+s has
to be smaller than or equal to n2 .

To motivate the strategy of the multi-bead wiggle move,
we write the pieces of the non-interacting propagator G0 that
depend on the particle index k and the time slice indices j to
j+s out explicitly,

l t

l t

l t l t
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´ -
-

D
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-

D
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+
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k j s k j j s
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m
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0
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constant

, 2 , ,
2

zeroth level

, 4 , , 2
2

, 3 4 , 2,
2

first level

where = +a b a b¯ ( )r r r 2k k k, , , , . If s is equal to 2l, equation (58)
contains l levels (the zeroth level is counted as one level but
the constant term is not). Equation (58) suggests that the
sampling can be done level by level. For example, for a path
segment consisting of three time slices (s=4 and j=0), the
beginning bead is rk,0 and the ending bead is rk,4. Thus, there
exist two levels in total. First, the new midpoint bead rk,2

new is
proposed according to the 0th level (partial) proposal
distribution � ¢( )x x0th , i.e. rk,2

new is generated by sampling
a three-dimensional Gaussian distribution with variance
l tDs 2m . Second, the new midpoint beads rk,1

new and rk,3
new

are proposed according to the 1st level (partial) proposal
distribution � ¢( )x x1st , i.e. rk,1

new and rk,3
new are generated by

sampling three-dimensional Gaussian distributions with
variance l tDs 4m .

In general, the uth level (partial) proposal distribution
� ¢( )x xuth reads

�
l t

¢ = -
- +

D=

+ - + - ++
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

[ ( ) ]
( )( ) ( )

s
x x

r r r
exp

2

2
, 59u

v

k j s v k j s v k j sv

m
uth

1

2
, 2 1 2

new
, 1 2 , 2

2u
u u u1
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which implies that + - +( )rk j s v, 2 1 2
new

u 1 can be generated by
sampling a three-dimensional Gaussian with variance
l tD +s 2m

u 1. Since the uth level proposal distribution
� ¢( )x xuth depends only on the position vectors of the

-( )u 1 th level, the new path segment + + -"{ }r r, ,k j k j s, 1
new

, 1
new

can, indeed, be generated level by level. The product of
� ¢( )x xuth over all levels (i.e. �=

-
u
l

u0
1

th) yields the ‘full’
proposal distribution � ¢( )x x . Denoting the time slices that
involve the newly proposed beads by Rv

new, where v ranges
from +j 1 to + -j s 1, and using the second-order Trotter
formula, the acceptance distribution � ¢( )x x becomes

�
t
t

¢ =
-D
-D= +

+ -⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) [ ( )]

[ ( )]
( )V

V
x x

R
R

min 1,
exp
exp

. 60
v j

j s
v

v1

1 new

The staging algorithm allows one to reject the multi-bead
wiggle move in advance, i.e. before the entire new path
segment has been generated, if ‘bad bead positions’ are drawn
[9]. The ‘in advance rejection’ is checked for at each level u.
Let us assume that we are considering level u with the new
midpoint beads + - +( )rk j s v, 2 1 2

new
u 1, where v ranges from 1 to 2u.

Using the second-order Trotter formula, the move is accepted
or rejected based on

�
t

t

¢

=
-D

-D=

+ -

+ -

+

+

⎛
⎝
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( )( )

( )
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min 1,

exp

exp
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u

v

j s v

j s v

th

1

2
2 1 2

new

2 1 2

u
u

u

1

1

If �uth is smaller than a random number drawn uniformly
from the interval [0,1], the move is rejected at the uth level
and the new configuration is set equal to the old configura-
tion; otherwise, the move is accepted. If the move is accepted
at the uth level, we go to the +( )u 1 th level and repeat the
procedure. If the final level is reached and the new proposed

beads are accepted, then the entire path segment consisting of
the proposed new beads + + -"r r, ,k j k j s, 1

new
, 1

new is accepted and a
configuration with a new path segment has been generated.

The outcome of the ‘multi-bead sampling + staging’
algorithm is equivalent to that of the multi-bead algorithm
without staging, which proposes all the beads of the path
segment considered first and then accepts or rejects at the very
end. The staged (or in-advance) rejection speeds up the
algorithm. Importantly, the staging algorithm only works if
the Trotter formula is used. If the pair product approximation
is used, the rejection needs to be done at the very end because
the propagator for consecutive time slices cannot be
reorganized into different levels.

Figure 5 illustrates the wiggle move for a single particle
in a one-dimensional harmonic trap ( j=14 and s=16). The
proposed new path is constructed as follows: a new midpoint
bead with index 22 is proposed and tested according to
equation (61); if rejected (i.e. if the random number generated
is smaller than �0th), the move is aborted in advance and the
new configuration is set to the old configuration; if not
rejected, the construction of the new path segment is
continued (this is what is assumed in making figure 5). In
the latter case, two new midpoint beads with index 18 and
26 are proposed and tested simultaneously according to
equation (61). If rejected, the move is aborted in advance
and the new configuration is set to the old configuration; if not
rejected, four new midpoint beads with index 16, 20, 24, and
28 are proposed and tested simultaneously according to
equation (61). If rejected, the move is aborted in advance
and the new configuration is set to the old configuration; if not
rejected, eight new midpoint beads with index 15, 17, 19, 21,
23, 25, and 29 are tested simultaneously according to
equation (61). If rejected, the move is aborted with the new
configuration being the old configuration; if not rejected, the
move is accepted in its entirety and the path segment that
involves the beads with index 15–29 is changed to the new
position vectors.

4.3.3. Pair distance move. The pair distance move is
employed in systems with two-body zero-range interactions.
As discussed earlier, two-body zero-range interactions can be
treated using the pair product approximation but not, to the
best of our knowledge, using the Trotter formula based
decomposition of the propagator. The use of the pair distance
move is especially important if the two-body s-wave
scattering length diverges. The key motivation is that two
particles can, if zero-range interactions are present, be close to
each other or even on top of each other. Traditional moves
such as the wiggle move and the naive move, however, do not
generate configurations in which particles sit on top of each
other. The reason is that the scaled pair distribution function
p ( )r P r4 2

12 for non-interacting particles or for uniformly
distributed particles is zero at r=0, implying that
configurations with vanishing pair distance are not
generated by the traditional moves. The pair distance move
involves two particles with the same time slice index j, where
= "j n0, , 2 . The proposed move keeps the center of mass

Figure 5. Illustration of the wiggle move for a single particle in a
one-dimensional harmonic trap. The black circles and red squares
depict the old and proposed new configurations, respectively. It is
assumed that the construction of the new path segment was
continued after the construction of the first midpoint bead, the next
two midpoint beads, and so on.
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of the selected pair unchanged but modifies its relative
distance vector.

The pair distance move can be implemented as follows. (i)
Randomly choose the indices k, l and j of the single-particle
beads rk j, and rl j, involved in the move and set = -r r rk j l jold , ,

and = ∣ ∣r rold old . Store the old center-of-mass vector b of the
selected pair, = +( )b r r 2k j l j, , . (ii) Generate a new relative
distance vector d= + ˆrr r rnew old old, where dr is obtained by
choosing a value uniformly from the pre-set interval
-D D[ ]r r, . This prescription implies that dr can be negative
and that rnew, in turn, lies along the directions rold or-rold. (iii)
Calculate the ratio w, d p p= +( ) [( ) ]w r r rold

2
new old

2
old . If this

ratio is larger than a random number drawn uniformly from 0 to
1, accept the move and set = +r b r 2k j, new and

= -r b r 2;l j, new otherwise, reject the move (in this case,
rk j, and rl j, remain unchanged). The value of Dr is adjusted
such that approximately 50% of the proposed moves are
accepted.

The acceptance/rejection step involves the quantity w. If
j is not equal to 0 or n2 , w reduces to

d t t

t t
=

+ D D

D D
- +

- +

( ) ( ) ( )
( ) ( ) ( )
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r G G

R R R R
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If j is equal to 0, one finds
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The expression for =j n2 is similar to that for j=0. In
equations (62) and (63), R j

new is defined as

= +

-

- + -

+

" "
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R r r b r r r b

r r r

, , , 2, , , ,

2, , , .

64

j k j k j l j

l j N j

new
1 1, new 1, 1,

new 1, ,

As already alluded to, the propagator G entering in the
expressions for w is expressed using the pair product
approximation, i.e. each of the Gʼs is replaced by the
expression given in equation (37). Careful inspection of the
resulting expression for w shows that a number of terms in
the numerator can be canceled by corresponding terms in the
denominator. However, since the reduced pair propagator Ḡrel

‘connects’ the kth particle with all other particles and the lth
particle with all other particles, two products over a particle
dummy index survive for each of the Gʼs, making the pair
distance move computationally more expensive than the naive
move implemented using the Trotter decomposition (in fact,
the argument just given explains why the pair product
approximation is, generally speaking, computationally more
demanding than Trotter formula based schemes). The ratio

d+( ) ( )r r rold
2

old
2, which is included in the acceptance step,

ensures that the small interparticle distance behavior is
described properly. The reader is referred to [45] for more
details.

4.4. Expectation values

The previous section outlined how to generate new config-
urations. Assuming that no symmetrization or anti-symme-
trization is needed (see section 4.6 for details) and that a
suitable trial function yT is known, the missing piece for
completing the PIGS algorithm is the determination of the
weight function ( )w x (see equation (47)). This section dis-
cusses the derivation of the form of the weight function ( )w x
for selected observables; the steps outlined below can be
generalized to other observables. Explicit expressions for

( )w x can be derived for many observables using either
quantum estimator relations such as equation (12) or ther-
modynamic type relations such as equation (13). The deter-
mination of the superfluid or condensate fractions is more
involved and not considered in this review.

4.4.1. Example: energy estimator. Using the thermodynamic
type relation, equation (13), and plugging in one of the
approximate expressions for the propagator, an explicit
expression for the weight function ( )w x can be derived. As
an example, we consider the thermodynamic energy estimator
for the second-order Trotter formula for particles without
permutations. Using equation (19) and equation (25) without
the ' tD( )3 term in equation (7), the normalization factor

t( )Z reads
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Using equation (65) in equation (13), recalling that τ is equal
to tDn , and denoting the energy estimator tE —calculated for
a finite number of time slices by á ñET —we obtain
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The goal is now to rewrite the right-hand side of equation (66)
such that we can read off ( )w x by comparing with
equation (47). Combining equation (26) (without the
' tD( )3 term) and equation (45), we recognize that
equation (66) can be rewritten in terms of p ( )x ,

òt
p

t
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¶
¶D( )
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Z n

x
x

1 1
2

d . 67T
x
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The probability distribution p ( )x depends on tD through the
n2 propagators G0. Applying the chain rule to evaluate the
derivative with respect to tD , we obtain
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Comparing equation (68) with equation (47), one reads off
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The right-hand side of equation (69) can be evaluated
straightforwardly, provided the configuration x is known.

Using the quantum estimator relation, equation (12), an
alternative energy estimator can be derived. Here, we derive
the quantum energy estimator for particles without permuta-
tions using the second-order Trotter formula as an example.
Our goal is to rewrite equation (12) such that we can read off
the form of ( )w x by comparing with equation (47). To this
end, we derive an auxiliary identity (see equation (74)) that
we use below to rewrite the integrand of the numerator of
equation (12).

Using the position representation of the Hamiltonian
Ĥ [82],

dá ¢ñ = - ¢∣ ˆ ∣ ( ) ( )H HR R R R , 70R
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2

one finds
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or, integrating by parts twice,
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Performing the integration over ¢R on the right-hand side of
equation (73), we have
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We denote the quantum estimator tE (equation (12)),
evaluated using a finite number of time slices, by á ñEH . Inserting
the closure relation (equation (8)) -n2 2 times into equation (12)
and using equation (74) with τ replaced by tD , we obtain
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Applying the second-order Trotter formula (equation (26) with-
out the' tD( )3 term) to equation (75), we obtain
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Because Ĥ commutes with the propagator, Ĥ can be applied to
any time slice (in the derivation above, Ĥ was applied to the nth
time slice). This implies that one can average over all time slices
to improve the accuracy (i.e. to take more ‘measurements’ for
each configuration). Averaging over all possible time slice
indices, we obtain
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Comparing equation (77) with equation (47), we obtain
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In equation (78), the head (0th time slice) and tail ( n2 th time
slice) are not treated on equal footing because of the partial
derivative. The expression can be made ‘symmetric’ by
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averaging over additional terms for which the derivative yields a
term that contains the factor -+R Rj j1 . Compared to
equation (69), equation (78) contains three extra terms in the
sum. In the ¥n limit, both estimators approach the true
expectation value. However, for finite n, á ñET and á ñEH generally
give different estimates of the energy. To obtain accurate results,
one needs to extrapolate the finite tD calculations to the zero
time step limit. The difference between the two estimators for a
single tD may be used as a rough estimate of the systematic
error [6].

4.4.2. Example: structural properties. The energy estimator is
special in that the information carried by all +n2 1 time slices
can be used (see the sum over j in equations (69) and (78)). The
reason is that the Hamiltonian operator commutes with the
propagator. For other estimators, only the information carried by
the middle or nth time slice and the associated propagators can, in
general, be used. This section exemplarily discusses the
determination of structural properties within the PIGS framework.

Quite generally, the operator D̂ corresponding to a structural
observable can be written as a function ( )f R times a δ-function.
For example, for the scaled pair distribution function p ( )r P r4 2

12
for particles one and two, ( )f R is equal to one and the δ-function
is equal to d -( ∣ ∣)r rref 12 , where r12 is the distance vector
between particles one and two. Replacing á ¢ ¢¢¢ñ∣ ˆ ∣HR R on the
right-hand side of equation (12) by d d- ¢ - ¢¢¢( ∣ ∣) ( )r r R Rref 12 ,
one finds d= - -( ) ( ∣ ∣)w rx r rn nref 1, 2, . Similarly to the
stochastic evaluation of structural properties for a given many-
body (zero-temperature) wave function, the δ-function in the
operator yielding the pair distribution function amounts to sorting
the configurations into small intervals or bins and counting the
number of configurations that fall into each of the intervals.

In practice, to obtain the scaled pair distribution function
p ( )r P r4 2

12 for particles one and two, we discretize the pair
distance r12, = -∣ ∣r r r12 1 2 , into a series of kmax bins
d d+[ ( ) ]k r k r, 1 , where k range from 0 to -k 1max . During

the simulation, the pair distance is calculated for many
configurations and sorted into the bins, i.e. a histogram of the
pair distances is collected. For each configuration considered
(note, we may skip configurations to ensure that the samples
collected have neglegible correlations), the pair distance r12 is
calculated for the middle time slice Rn. The bin number l of
the histogram is calculated by evaluating d= ( )l r rFloor 12 ,
where Floor ( )x gives the largest integer smaller or equal to x,
and the histogram value vl of the lth bin is increased by one.
At the end, the histogram defined by the vl is normalized by
dividing by the total number Bt of pair distances considered
and the bin size dr . The histogram created is a discretized
version of the scaled pair distribution function p ( )r P r4 2

12 .
The approach outlined yields the correct normalization even if
some pair distances generated during the simulation are larger
than dk rmax . We typically monitor how many distances
cannot be sorted into the histogram by comparing å vl l with
Bt. If the fraction is too large, then the ‘cutoff’ dk rmax needs to
be increased.

Because the process involved in calculating different
structural properties such as the pair distribution function and
triple distribution function is the same, the data structure used
to accumulate different distribution functions and the
accumulation process can be described by a single class in
object oriented programming languages. This avoids duplica-
tion of the code. In the code, the desired estimator (the
‘object’) such as the pair distribution function estimator and
the triple distribution function estimator can be constructed
according to the same class and can be initialized with
observable specific parameters such as the bin size, the bin
number, and the number of particles. To accumulate the
weight and finalize the results, the same virtual methods can
be called for different estimators. The actual implementation
of these virtual methods may or may not be the same for
different estimators. For example, the scaled pair and scaled
triple distribution functions can share the same implementa-
tion since both are described by an operator of the form
d -( )r rref , where rref is either the pair distance or the three-
body hyperradius (see, e.g., [83, 84] for the resulting
distribution function). The (unscaled) pair distribution func-
tion, in contrast, is described by an operator of the form
d p-( ) ( )r r r4ref

2 and has to be implemented separately.

4.5. Error analysis

The expectation value á ñ( )f x of a function ( )f x with respect
to the probability density function ( )p x is defined as

òá ñ =( ) ( ) ( ) ( )f f px x x xd . 79
x

In the PIGS algorithm, we generate a finite series X of con-
figurations xj,

= "{ } ( )X x x x, , , , 80M1 2

according to the probability distribution p ( )x . The expecta-
tion value á ñO of an operator can then be estimated by the
mean value Ō of the series X,

å=
=

¯ ( ) ( )O
M

w x
1

. 81
j

M

j
1

We refer to Ō as á ñO X . In the limit ¥M , the mean value Ō
approaches the expectation value á ñO (see equation (47)).

According to the central limit theorem, the mean value Ō
of the series X approaches the expectation value á ñO in a
predictive manner. The ‘standard’ central limit theorem states
that the mean of a sufficiently large number of random
samples, drawn from a distribution with a well-defined mean
value and variance, is approximately normally distributed
[59, 85]. Since the Markov chain generates a series of data
that is correlated for small ‘lag’ and uncorrelated for large
‘lag’, the standard central limit theorem cannot be applied
directly. However, it has been shown that the central limit
theorem can be extended to Markov-chain generated data
[86]. Thus, we divide the series X, obtained from the PIGS
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samples ( )w xj , into L blocks, each with =l M L configura-
tions. Defining the block averages Sk,

å=
= - ´ +

´

( ) ( )
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S
l

w x
1

, 82k
j k l

k l

j
1 1

we construct the series "{ }S S, , L1 . Provided l is sufficiently
large (in our applications, the value of l ranges from 10 to
104), the block averages Sk are normally distributed and the
variance s2 of the block averages can be estimated from the
sample variance sá ñX2 ,
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Note that S̄ is equal to Ō (this can be seen by comparing
equations (81) and (82)). In our simulations, we estimate the
error of the expectation value á ñO using sá ñ̄O X ,

s
s

á ñ =
á ñ ( )¯

L
, 85O X

X
2

i.e. we report the mean Ō with error sá ñ̄O X .
In our simulations, the number l of configurations per

block is determined such that the block averages Sk are nor-
mally distributed. Alternatively, the value of l (and, assuming
M is fixed, that of L) can be determined by calculating the
autocorrelation length [1, 77]. The latter approach is more
commonly used and is somewhat simpler to implement. The
two approaches should yield comparable results.

Considering Q simulations, each yielding a series Xj and
correspondingly sá ñX

2
j (assuming finite L), the estimate of

the standard deviation is biased because the mean value of a
square root function is not equal to the square root of the
mean, i.e.

å ås sá ñ
¹

á ñ
= = ( )

Q Q
. 86j

Q
X j

Q
X1

2
1

2
j j

Since the bias becomes negligible for sufficiently large L, there is
no need to correct for the bias. In our simulations, L is typically
80 or larger. Because the elements Sj in "{ }S S, , L1 are normally
distributed, the variance sá ñX2 is approximately a constant for
sufficiently large L and the error sá ñ̄O X scales, according to
equation (85), as L1 . Thus, to improve the accuracy of an
observable by an order of magnitude, the computational time
needs to be increased by two orders of magnitude.

To check whether the final distribution is approximately
normal, one can make a histogram of the observable under
study. Figure 6 shows the normalized histogram for the
energy of the (3, 3) system at unitarity. The notation (3, 3)
refers to three spin-up fermions and three spin-down fermions
under external harmonic confinement with angular frequency
ω (the oscillator energy of �w is denoted by Eho). The physics
of this small fermionic system is discussed in more detail in
section 5. The example considered here uses t = -( )E0.5 ho

1,

tD = -( )E0.125 ho
1, and yT given in equation (120); the

resulting extrapolated tD = 0 energy is reported in table 3.
The simulation is done on 480 processors with each processor
producing 80 block averages. This yields a total of 38 400
block averages. Even though these block averages are not
obtained from a single Markov chain but from 480 indepen-
dent Markov chains, we calculate the mean and error of the
mean using, respectively, equations (84) and (85) with
=L 38 400. The resulting sample mean is E8.273 ho with an

error or uncertainty of E0.006 ho. Using the calculated mean
and standard deviation, the solid line in figure 6 shows the
corresponding normal distribution. It can be seen that the
solid line provides a faithful description of the histogram,
indicating that the underlying samples are indeed normally
distributed.

The presented analysis requires a sufficiently large
number of block averages. In practice, it may not be feasible
or advisable to calculate many block averages. In such a case,
one can check if the error scales as L1 with the number of
blocks L. Reducing the number of blocks by a factor of two,
one should observe that, if the block averages are normally
distributed, the error increases roughly by a factor of 2 . This
check can be performed for as few as 5 or 10 blocks and
provides, in many cases, enough information to reliably
assign error bars.

To check explicitly whether the samples are independent,
one needs to perform autocorrelation (or serial correlation)
tests [7]. Given a series of numbers "{ }x x, , L1 , the lag k
correlation coefficient rk, which measures the correlation of
the series of numbers -"{ }x x, , L k1 and + "{ }x x, ,k L1 , is given
by [89]

å
å

=
- -

-

=
-

+

=

( )̄( )̄

( )̄
( )r

x x x x

x x
, 87k

j
L k

j j k

j
L

j

1

1
2

where x̄ denotes the average of the numbers "{ }x x, , L1 . If the
samples are truly uncorrelated, the rk approximately follow a

Figure 6. Normalized histogram of the energy E Eho, calculated
using the thermal estimator, for the harmonically trapped (3, 3)
system at unitarity. The histogram is constructed using 38 400 block
averages generated using 480 processors (see the text for details).
The red solid line shows the normal distribution with mean value of
=E E8.273 ho and standard deviation of E1.124 ho (the error of the

mean is =E E1.124 38 400 0.006ho ho).
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normal distribution for sufficiently large L−k and the var-
iance of rk is approximately equal to L1 . Furthermore, the
probability that rk falls into the interval

- - - -
-

- + - -
-

⎡
⎣⎢

⎤
⎦⎥ ( )L k

L k
L k

L k
1 1.96 1

,
1 1.96 1

88

is 95% [89]. Based on hypothesis testing theory [90], it is
claimed, with 95% confidence, that a sample is correlated if rk
(based on a single test for one k) falls outside the interval
given in equation (88).

Figure 7 shows the correlation coefficient rk (equation (87)
with L=80) for 80 block averages generated on a single
processor (i.e. obtained from a single Markov chain) as a
function of the lag k for the system and observable considered
in figure 6. Since the correlation coefficients for .k 1 all lie
within the confidence band, it is said that the data pass the
autocorrelation test. For the data shown in figure 6, similar
correlation coefficient plots are obtained for each of the 80
block averages generated by the other 479 processors. This
verifies that the samples are truly independent.

4.6. Permutations: on-the-fly anti-symmetrization scheme

To account for the particle statistics, one needs to ensure the
proper behavior of the propagator under particle permutations.

The Hilbert space for identical bosons or identical fermions is
restricted compared to that of Boltzmann particles described by
the same Hamiltonian. The discussion so far, including the
short-time approximations for the propagator introduced in
section 3.1, applies to Boltzmann particles.

In the ‘standard’ approach of generating paths for systems
containing identical particles, the symmetrizer and anti-sym-
metrizer are evaluated stochastically (the corresponding move is
referred to as ‘permutation move’) [6, 9]. This implies that Bose
and Fermi systems are simulated by the same paths. Expecta-
tion values, in contrast, are accumulated by including ‘weight
factors’ (plus and minus signs) that account for the particle
statistics. This standard approach can be thought of as an analog
of a post-symmetrization scheme, where one first generates
configurations that represent the entire Hilbert space and then
projects out those configurations that have the proper symmetry.

Here, we introduce an alternative ‘on-the-fly’ symmetriza-
tion/anti-symmetrization scheme that explicitly enforces the
proper symmetry at each imaginary time index. This scheme is
particularly useful for fermionic systems with zero-range inter-
actions. Without a three-body regulator and without this on-the-
fly anti-symmetrization scheme, two-component Fermi gases
would undergo Thomas collapse [91]. A downside of the
scheme discussed below is that the computational effort scales
factorially with the number of identical particles; as a con-
sequence, the scheme becomes prohibitively expensive with
increasing number of particles. While the on-the-fly symme-
trization scheme can be applied to systems that contain identical
bosons, the explicit symmetrization is typically not needed in
this case since the ground state wave function of the system in
which the bosons are replaced by Boltzmann particles is iden-
tical to that of the system with bosons. Thus, the discussion in
this section is most useful for fermions.

We start with a general discussion that will be useful for
our on-the-fly anti-symmetrization scheme and then discuss
on-the-fly anti-symmetrization scheme and PIGS specific
aspects. To this end, we introduce the symmetrizer (̂ [6]. For
single-component Bose and Fermi systems (N identical par-
ticles), (̂ can be written as [92]

( å=
s

s
sˆ

!
( ) ˆ ( )( )

N
P

1
1 , 89NI

Table 3. Spin-balanced two-component Fermi gas ( -N 2 5) with zero-range interactions at unitarity. Column1 lists the ( )N N2, 2 system
considered. Column 2 reports the value of α, obtained from equation (127) using the energies reported in [87]. Columns 3–6 show the
propagation time τ, the scheme used to extrapolate the energy to tD = 0, the n used (the number of time slices is +n2 1), and the resulting
extrapolated tD = 0 PIGS energy EPIGS with error bars, respectively. The abbreviation ‘extrap.’ in the header of column4 stands for
‘extrapolation’ and ‘4th’ and ‘2nd’ are to be read as ‘4th order’ and ‘2nd order’, respectively. For comparison, columns 7 and 8 show energies
from the literature, obtained using the explicitly correlated Gaussian (ECG) approach [87] (the energies are denoted by EECG) and the
diffusion Monte Carlo method [88] (the energies are denoted by EDMC), respectively; the energies EECG and EDMC are obtained by
extrapolating a series of finite-range energies to the zero-range limit.

α tEho extrap. n used E EPIGS ho E EECG ho E EDMC ho

( )2, 2 0.505 1 4th 4, 5, 6, 8 5.0069(29) 5.0091(4) 5.028(2)
( )3, 3 0.390 0.5 2nd 3, 4 8.353(14) 8.337(4) 8.377(3)
( )4, 4 0.335 0.5 2nd 2, 4 11.99(7) 12.03(3) 12.04(1)
( )5, 5 0.306 0.25 2nd 1, 2 16.12(6) 16.12(6) 16.10(1)

Figure 7. The crosses show the correlation coefficient rk as a
function of the lag k ( = –k 1 40) for the sample and observable
considered in figure 6. A series of 80 block averages, obtained from
a single Markov chain (and processor), is analyzed. The upper and
lower solid lines show the 95% confidence interval defined in
equation (88).

19

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 223001 Tutorial



where σ denotes the permutation of particle indices, s( )NI the
number of inversions in σ4, and ŝP the corresponding per-
mutation operator. The plus (minus) sign in equation (89)
applies to identical bosons (fermions). For example, the
symmetrizers (to unify the notation, we use the term sym-
metrizer for bosons and fermions) for two and three identical
fermions are ( �=ˆ ˆ

2 and ( �=ˆ ˆ
3, � = -ˆ ( ˆ )P1 22 12 and

� = - - - + +ˆ ( ˆ ˆ ˆ ˆ ˆ )P P P P P1 63 12 13 23 123 132 , respectively.
Here, "P̂ijk l replaces the identity of particle i (i.e. its entire
‘information’ including spatial coordinates, spin degrees of
freedom, etc) with that of particle j, that of particle j with that
of particle k, L, and that of particle l with that of particle i.
The symmetrizer (̂ commutes with P̂ij if the ith and jth par-
ticles are identical. In the previous examples, �̂2 commutes
with P̂12 and �̂3 commutes with P̂12, P̂13, and P̂23. The defi-
nition of the symmetrizer (̂ can be generalized to multi-
component Bose and Fermi systems as well as Bose–Fermi
mixtures. In these cases, the total symmetrizer is written as a
product of symmetrizers for each component. For example,
the symmetrizer for the mixture of two identical bosons
(particles 1 and 2) and two identical fermions (particles 3 and
4) reads + -( ˆ )( ˆ )P P1 1 412 34 .

The symmetrizer (̂ also commutes with the Hamiltonian
Ĥ and the propagator Ĝ. (̂ serves the purpose of projecting
out the wave functions that satisfy the proper exchange
symmetry, i.e. it divides the Hilbert space into two parts: (i) if
ys is an eigen state with the proper symmetry, then one has
(y y=ˆ

s s. (ii) If, in contrast, yns is an eigen state that does not
have the proper exchange symmetry, then we have (y =ˆ 0ns .
We note that the eigen values of the symmetrizer (̂ are 0 and
1 while those of the two-particle permute operator P̂12 are −1
and 1. As we will show in the following, the fact that the
eigen values of (̂ are either 0 or 1 implies

( (=ˆ ˆ ( ). 902

To prove equation (90), we introduce a unitary matrix -
that diagonalizes the Hermitian symmetrizer (̂ , i.e. - is
constructed such that � -(-= -ˆ ˆ 1 is diagonal. Because (̂
and �̂ are related through a unitary transformation, �̂ and (̂
share the same eigen values. Since the eigen values of �̂ are
either 0 or 1, �̂ is diagonal with diagonal elements 0 or 1.
This implies that �̂2 is equal to �̂. We now rewrite (̂2 using
( - �-= -ˆ ˆ1 ,

( - �- - �-= - -ˆ ( ˆ )( ˆ ) ( ). 912 1 1

Using - - =- 11 , we have

( - ��-= -ˆ ˆ ˆ ( ). 922 1

Since �̂2 is equal to �̂ (see above), one finds ( - �-= -ˆ ˆ2 1

and thus ( (=ˆ ˆ2 , which is what we set out to prove.
The symmetrized propagator can, as we prove below, be

written as (ˆ ˆGunsymm , where Ĝunsymm is the unsymmetrized
propagator, i.e. the propagator for the corresponding system

with Boltzmann particles. In position space, the symmetrized
propagator ( t¢( ˆ )G R R, , ; can be rewritten as [6]

( (t t¢ = á - ¢ñ( ˆ ) ∣ ( ˆ ) ˆ ∣ ( )G HR R R R, , ; exp 93

or as a sum over the unsymmetrized propagators,

( (åt s t¢ µ ¢
s

s( ˆ ) ( ) ( ˆ ) ( )G GR R R R, , ; sgn , ; , 94

where s( )sgn is the sign for the permutation σ (for single-
component fermions, s = - s( ) ( ) ( )sgn 1 NI ). In equation (94),
we use the proportionality symbol since the ‘normalization
factor’ depends on the number of identical particles in the
system (for N identical particles, the proportionality symbol
becomes an equal sign if the right-hand side is multiplied
by -( !)N 1).

We now prove that (ˆ ˆGunsymm is, indeed, the symmetrized
propagator. In Schrödinger quantum mechanics, the symme-
trized propagator in position space reads

( åt t y y¢ = á - ñá ¢ñ( ˆ ) ∣ ( ˆ ) ∣ ∣

( )

G HR R R R, , ; exp ,

95
j

j jsymm, symm,

where y{ }jsymm, is the complete set of symmetrized eigen
states, e.g., for N identical bosons or N identical fermions.
The complete set of unsymmetrized eigen states of Ĥ , i.e. the
set of eigen states for Boltzmann particles is denoted by
y{ }junsymm, . Recall that the (̂ operator can be diagonalized
using the unitary matrix - . - ‘reorganizes’ the eigen states
y junsymm, such that the new eigen states are also eigen states of
(̂ . The resulting eigen states yr j, ,

-åy y= ( ), 96r j
l

jl l, unsymm,

either have the proper symmetry, i.e. (yˆ
r j, is equal to yr j, (in

this case, the eigen value of (̂ is 1) or (yˆ
r j, gives zero (in this

case, the eigen value of (̂ is 0). The subset of eigen states
y{ }r j, , for which (yˆ

r j, is equal to yr j, , coincides with the
complete set of symmetrized eigen states. This process of
constructing a set of properly symmetrized eigen states from a
complete set of unsymmetrized eigen states is known as post-
symmetrization. For later reference, we write down the aux-
iliary identity

- -å åy y y yñá = ñá-∣ ∣ ∣ ∣ ( ), 97
l

l l
l

r l r lunsymm, unsymm,
1

, ,

which can be obtained using the matrix form of equation (96),

-y y y y¼ = ¼{ } { } ( ), , , , . 98r r
T T

,1 ,2 unsymm,1 unsymm,2

We now manipulate the right-hand side of equation (93)
so that it can be readily related to equation (95). Starting with
the right-hand side of equation (93) and using equation (90),
we find

( ((t tá - ¢ñ = á - ¢ñ∣ ( ˆ ) ˆ ∣ ∣ ( ˆ ) ˆ ˆ ∣ ( )H HR R R Rexp exp . 99

Inserting -- =- 1̂1 and then

å y yñá =∣ ∣ ˆ ( )1, 100
l

l lunsymm, unsymm,
4 In Mathematica, the number of inversions NI(σ) is represented by the
function inversions.
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we find

( (-

- (å
t t

y y

á - ¢ñ = á -

´ ñá ¢ñ-

∣ ( ˆ ) ˆ ∣ ∣ ( ˆ ) ˆ
∣ ∣ ˆ ∣ ( )

H HR R R

R

exp exp

. 101
l

l lunsymm, unsymm,
1

Using equation (97) in equation (101), we find

( (

(å
t t

y y

á - ¢ñ = á -

´ ñá ¢ñ

∣ ( ˆ ) ˆ ∣ ∣ ( ˆ ) ˆ
∣ ∣ ˆ ∣ ( )

H HR R R

R

exp exp

. 102
l

r l r l, ,

Finally, noting that ( (y yå ñáˆ ∣ ∣ ˆ
l r l r l, , is equal to yå ñ∣l lsymm,

yá ∣lsymm, , we arrive at

(

å
t t

y y
á - ¢ñ = á -

´ ñá ¢ñ

∣ ( ˆ ) ˆ ∣ ∣ ( ˆ )
∣ ∣ ( )

H HR R R
R

exp exp

, 103
l

l lsymm, symm,

i.e. we have proven that (ˆ ˆGunsymm (the left-hand side of
equation (103) in position space) is identical to the symme-
trized propagator in position space in Schrödinger quantum
mechanics (equation (95)).

Replacing the propagator tá - ¢ñ∣ ( ˆ )∣HR Rexp by
(tá - ¢ñ∣ ( ˆ ) ˆ ∣HR Rexp in all expressions involving the propa-

gator (such as the normalization factor t( )Z , the probability
distribution p ( )x , and the weight function ( )w x ), we have all
elements of the PIGS algorithm for bosons and fermions; as
indicated at the beginning of this section, the trial function yT

will be discussed in section 5 for specific examples. The
symmetrized probability distribution p ( )xsymm , e.g., reads

(

( (

p y t

t t y

= D

´ D ´ ´ D-

"

"

( ) ( ) ( ˆ )
( ˆ ) ( ˆ ) ( )

( )

G

G G

R R R R R

R R R R R

, , , , ;

, , ; , , ; ,

104

n T

n n T n

symm 0 2 0 0 1

1 2 2 1 2 2

where each symmetrized propagator is a sum over unsym-
metrized propagators with permuted configurations. This
implies that the complexity of the symmetrized PIGS algo-
rithm is increased by up to a factor of !N compared to the non-
symmetrized PIGS algorithm.

Since the symmetrizer is applied at each link (see
equation (104)), the number of operations needed to evaluate
the symmetrized propagator scales as !nN2 for N identical
particles. This implies that the on-the-fly symmetrization
scheme becomes inefficient if the number of time slices is too
large; section 5 demonstrates that reliable results for two-
component Fermi gases can be obtained for a series of n as
small as 1, 2 and 4. If the Trotter formula is used, some terms
can typically be pulled out of the sum over the permutations,
reducing the computational effort somewhat. If the pair pro-
duct approximation is used, analogous simplifications are, in
general, not possible. However, as mentioned at the beginning
of this section, the on-the-fly symmetrization scheme is par-
ticularly useful for fermionic systems with zero-range inter-
actions, which cannot be treated using the Trotter formula.

The change of the probability distribution from p ( )x to
p ( )xsymm needs to be accounted for in the implementation of
the moves and the collection of the expectation values. For
example, the acceptance function for the naive move is equal
to p ( )xsymm , implying that � ¢( )x x in equation (53) is

given by p p¢( ( ) ( ))x xmin 1, symm symm . The pair distance move
has to be modified analogously. To obtain the acceptance
function for the wiggle move, the derivation outlined in
section 4.3.2 needs to be carried out using the symmetrized
propagator. Similarly, the estimators need to be changed
accordingly. For example, to account for the permutations in
the thermodynamic energy estimator á ñET , p ( )x and t( )Z in
equation (66) have to be replaced by the corresponding
symmetrized quantities. If we wrote out, in analogy to
equation (69), the fully symmetrized expression for the
weight function ( )w x using the second-order Trotter formula,
it would be rather lengthy since the symmetrized propagator
contains a sum over permutations at each time slice.

The ground state of fermionic systems usually corre-
sponds to an excited state of the corresponding system with
Boltzmann statistics. This implies that explicit anti-symme-
trization is necessary to propagate the trial function to the
ground state with the correct particle statistics. The anti-
symmetrization introduces a ‘sign problem’ since the prob-
ability distribution can be positive or negative. The fact that
the probability distribution can take either sign can be dealt
with using the ideas of [83, 93].

The probability distribution for a given configuration can
take either sign. Integrating all the positive (negative) por-
tions, we obtain +Z ( -Z ). The normalization factor t( )Z is the
sum of +Z and -Z , t = -+ -( ) ∣ ∣ ∣ ∣Z Z Z . When accumulating
observables, the sign needs to be kept track of. In general, the
expectation value of an observable O can be written as

á ñ =
-

á ñ -
-

á ñ+

+ -
+

-

+ -
-

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
∣ ∣ ∣ ∣

( )O
Z

Z Z
O

Z
Z Z

O . 105

For the thermal energy estimator, e.g., this can be worked out
explicitly. Using t = -+ -( ) ∣ ∣ ∣ ∣Z Z Z , we find

t
á ñ = - -

¶ -
¶

+ -
- + -(∣ ∣ ∣ ∣) (∣ ∣ ∣ ∣) ( )E Z Z

Z Z
106T

1

or

á ñ = - á ñ - á ñ+ -
-

+ + - -(∣ ∣ ∣ ∣) (∣ ∣ ∣ ∣ ) ( )E Z Z Z E Z E , 107T T T
1

, ,

where

t
á ñ = -

¶
¶

-(∣ ∣) (∣ ∣) ( )E Z
Z

. 108T ,
1

In an actual calculation, the contributions á ñ+O and á ñ-O to the
estimator are first calculated separately and then weighted
according to their relative magnitudes. Alternatively,
equation (105) can be written as

á ñ =
+

á ñ +
+

á- ñ- +

+ -
+

-

+ -
-

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
∣ ∣ ∣ ∣

( )

O S
Z

Z Z
O

Z
Z Z

O ,

109

1

where

=
-
+

+ -

+ -

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )S
Z Z
Z Z

. 110

This suggests that one can think of the simulation as yielding
a purely positive normalization factor ++ -∣ ∣ ∣ ∣Z Z ; however, if
one does so, a minus sign needs to be included in the

21

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 223001 Tutorial



observable if the probability distribution for the chosen con-
figuration is negative. The final result is obtained if the
expression is multiplied by the factor S.

In equations (105) and (109), the term -+ -∣ ∣ ∣ ∣Z Z
appears in the denominator. If +∣ ∣Z becomes closer to -∣ ∣Z with
increasing propagation time, then the simulation becomes
increasingly more challenging since the statistical noise needs
to be smaller than the difference between +∣ ∣Z and -∣ ∣Z .

Finally, one may wonder if there are any constraints on
the trial function yT . For the fixed-node diffusion Monte
Carlo simulations, the trial function yT needs to be an eigen
state of the symmetrizer. This is not the case for PIGS
simulations because the symmetrized propagator projects out
the corresponding wave function.

5. Application to fermionic systems

5.1. General considerations

This section discusses applications of the PIGS algorithm to
harmonically trapped equal-mass two-component Fermi gases
consisting of n1 spin-up and n2 spin-down particles
( = +N n n1 2) in three-dimensional space. We refer to these
systems as ( )n n,1 2 . The model Hamiltonian Ĥ reads

= +ˆ ˆ ˆ ( )‐H H V , 111free space trap

where

�å åå=
-

+
= =

-

>

ˆ ( ) ( )‐H
m

V r
2

. 112
j

N

j
j

N

k j

N

jkfree space
1

2
2

1

1

F

The interspecies two-body zero-range potential ( )V rjkF is
given in equation (40) and the confining potential V̂trap with
angular trapping frequency ω reads

åw=
=

ˆ ( )V m r
1
2

. 113
j

N

jtrap
2

1

2

Throughout this section, we assume that the interspecies two-
body interaction is characterized by an infinitely large s-wave
scattering length as, i.e. we consider systems at unitarity. Like
fermions are assumed to be non-interacting, i.e. no intraspecies
interactions are considered. This assumption is realized in cold
atom systems provided one operates at magnetic field strengths
away from p- and higher-partial-wave resonances. As discussed
in sections 3.3–3.5, two-body zero-range interactions are most
conveniently treated using the pair product approximation. In
the calculations presented below, the reduced relative propa-
gator t¢¯ ( )G r r, ;rel (equation (43)), which accounts for the two-
body zero-range interactions, the kinetic energy, and the relative
two-body confining potential, is being used.

The Hamiltonian Ĥ is, for infinitely large as, character-
ized by one (meaningful) length scale, the harmonic oscillator
length aho, � w= ( )a mho . The harmonic oscillator length
also characterizes the non-interacting system. The range of
the interaction potential, which is zero, and the s-wave

scattering length, which is infinitely large, do not define
meaningful length scales. Moreover, for two-component fer-
mions with equal masses, the three-body system in free space
is unbound, implying that the three-body system does not
introduce a new (finite) length scale; in particular, Efimov
physics is absent [94, 95]. In what follows, we express
lengths in units of aho and energies in units of the harmonic
oscillator energy Eho, �w=Eho .

Two-component Fermi gases with vanishing interaction
range and infinitely large interspecies s-wave scattering length
have been and continue to be a paradigmatic strongly corre-
lated system, for which few analytical results are known and
which are challenging to treat numerically. The PIGS appli-
cations presented in this section have not been published
before. The examples are chosen for their pedagogical value
and for their relevance with regards to obtaining a more
complete understanding of small two-component Fermi gases.
Two types of systems are considered, spin-balanced systems
( = =n n N 2;1 2 see section 5.2) and spin-imbalanced sys-
tems ( = -n N 11 and =n 1;2 see section 5.3).

5.2. Spin-balanced Fermi gas

The ground state of spin-balanced two-component Fermi
gases has P = +( ) ( )L, 0, 1 symmetry, i.e. vanishing total
orbital angular momentum L and positive parity Π. Intui-
tively, this can be understood by realizing that each spin-up
fermion is paired with a spin-down fermion. In reality, the
pairing respects the identical particle characteristics, i.e. each
spin-up fermion is paired with ( )n1 2 th of each spin-down
fermion and each spin-down fermion is paired with ( )n1 1 th
of each spin-up fermion. The particle statistics is enforced
along the paths by explicitly applying the symmetrizer to each
of the n2 propagators (see, e.g., equation (104) for the sym-
metrized probability distribution). The applications below use
trial functions yT that have the proper particle symmetry build
in. In general, one could employ any trial function that has
finite overlap with the eigen state to be determined. In prac-
tice, however, it seems best to build as much ‘prior knowl-
edge’ as possible into the trial function.

In the following, we discuss the construction of the trial
function y ( )RT and the dependence of the energy on the
variational parameters entering into yT . In addition, the
convergence of the energy with respect to the total imaginary
propagation time τ is analyzed. As can be seen from
equation (3) and the surrounding discussion, τ should, in
principle, be taken to infinity to allow for the excited state
contributions to fully die out. In practice, this is not feasable
since the noise or error that arises due to the anti-symme-
trization (the sign error) increases with increasing τ. Thus, the
task is to find a regime of τ values, for which the excited state
contributions can be neglected and the sign error is suffi-
ciently small. For each fixed τ simulation, the convergence of
the results with respect to tD or, equivalently, the number of
time slices needs to be checked. Typically, for each fixed τ,
the results for several n are, in a first step, extrapolated to the

22

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 223001 Tutorial



infinite n limit. In a second step, the ¥n results for
several τ are considered to determine for which τ excited state
contributions can be neglected. In considering larger τ, it has
to be checked that the sign error is sufficiently small. Last, the
calculations should, ideally, be repeated for different yT to
ensure that the trial function does not introduce a bias. Having
an overview of the general PIGS procedure, we now discuss
the construction of the trial function yT .

Quite generally, the construction of the trial function is
guided by physical considerations. For example, one may
parameterize the trial function yT in terms of a set of variational
parameters a, which are optimized by minimizing the expec-
tation value of the Hamiltonian, calculated using yT , with
respect to the variational parametersa. A good trial function yT

is associated with a small energy variance. In fact, if the variance
is zero, the trial function coincides with one of the exact eigen
states of the model Hamiltonian. While the outlined optimization
strategy has been applied quite fruitfully to a number of systems,
it cannot—in general—be used for the model Hamiltonian and
trial functions considered in this article since both the kinetic
energy and the potential energy expectation values diverge for
Hamiltonian with zero-range interactions. For an exact eigen
state, the divergencies cancel, yielding a finite energy expecta-
tion value. For a trial function that does not fulfill the boundary
conditions imposed by the two-body zero-range interactions (see
below), the infinities prevent one from estimating the energy
expectation value reliably. As a consequence, we optimize the
‘variational parameters’ contained in yT using the PIGS
approach itself or using analytical arguments.

To motivate the functional form of our trial function yT ,
we consider the behavior of the many-body eigen function ψ
when a spin-up fermion (particle j) and a spin-down fermion
(particle k) approach each other while the other -N3 3
coordinates, collectively denoted by Y, where =Y

+ - + - +" " "{( ) }r r r r r r r r2, , , , , , , , ,j k j j k k N1 1 1 1 1 , are kept
fixed [37],

y µ -
⎛
⎝⎜

⎞
⎠⎟∣ ( ) ( )

r a
B Y

1 1
. 114r

jk s
0jk

Here, B is a function that is independent of the distance vector
rjk. The Bethe–Peierls boundary condition, equation (114), is
a direct consequence of the interspecies two-body zero-range
interactions and holds for any up–down pair distance rjk. If
the scattering length as diverges, as assumed throughout this
section, the boundary condition reduces to

y µ∣ ( ) ( )
r

B Y
1

. 115r
jk

0jk

The trial function is constructed such that yT (i) approximately
fulfills the boundary condition, equation (115); (ii) approxi-
mately describes a state containing N 2 up–down pairs; (iii)
changes sign under the exchange of any two identical fermions;
(iv) approximately accounts for the external harmonic confine-
ment; and (v) has P = +( ) ( )L, 0, 1 symmetry.

Guideline (ii) suggests a term of the form = +
-( )rj

N
j N j1

2
, 2

1.
This term fulfills the boundary condition for the pairs containing

the first and +( )N 2 1 st particle, the second and +( )N 2 2 nd
particle, and so on but not the boundary condition for pairs
containing, e.g., the first and +( )N 2 2 nd particle. Application
of the symmetrizer (̂ makes the short-distance behavior ‘less
ideal’. To see this, let us exemplarily consider the

=( ) ( )n n, 2, 21 2 system and act with (̂ onto -( )r r13 24
1,

( = -
⎛
⎝⎜

⎞
⎠⎟ˆ ( )

r r r r r r
1 1

2
1

2
. 116

13 24 13 24 23 14

Rewriting the second term on the right-hand side of
equation (116) in terms of the independent Jacobi vectors r13,
r24, and r13,24, where = + - +( )r r r r r13,24 2 4 1 3 (these coor-
dinates correspond to one of the so-called H-trees [96]), we
obtain

( =

-
+ - - +

⎛
⎝⎜

⎞
⎠⎟ˆ

∣ ∣∣ ∣ ( )

r r r r

r r r r r r

1 1
2

2
.

117

13 24 13 24

13,24 13 24 13,24 13 24

It can now be seen that the right-hand side of equation (117)
cannot be brought into the form of equation (115), implying
that application of the symmetrizer leads to a functional
form for which neither the ‘paired’ nor the ‘unpaired’
interspecies distances obey the Bethe–Peierls boundary
condition.

Attempting to find a compromise between guidelines (i)
and (ii), we write y ( )RT as

y = Fa( ) ( ) ( ) ( )fR R R , 118T trap

where ( )f Rtrap accounts for the external confinement,

å= -
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )f

a
R

r
exp

2
, 119

j

N
j

trap
1

2

ho
2

and Fa( )R for the correlations,

(

F

=

a

a
a

- - - = = ¹ +

= +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )

( ) ˆ ( )
( )

120
a

r

r

R

.N N N j
N

k k j
N

j N k

j
N

j N j
ho

2 2 1 1
2

1,
2

, 2

1
2

, 2

It can be readily checked that the right-hand side of
equation (120) has units of -length N3 2, as required for a
N3 -particle wave function. Since Fa( )R depends only on
scalars, i.e. interparticle distances, y ( )RT has the desired

P = +( ) ( )L, 0, 1 symmetry. In equation (118), α is an
adjustable parameter. For a = 0, Fa( )R fulfills the Bethe–
Peierls boundary condition for all up–down pairs, provided
the symmetrizer (̂ is dropped. A finite value of α reduces the
probability of spin up-spin down particles that are ‘not paired’
via the product in the denominator to be close to each other.
We pursue two avenues to determine the optimal α. We use
results from the literature to fix α, and we determine the
optimal α by analyzing our PIGS results.

To determine α using literature results, we rewrite the ;time-
independent Schrödinger equation in terms of the hyperspherical
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coordinates R and W, where R denotes the hyperradius,

å=
=

( )R r , 121
k

N

k
2

1

2

and W the -N3 1 hyperangles. Note that the hyperradius R,
which is simply given by ∣ ∣R , is defined without separating off
the center-of-mass degrees of freedom. For our purposes, the
exact definition of the hyperangles is not important. The key
ingredient for our train of thought is that the hyperradial and
hyperangular degrees of freedom decouple when the s-wave
scattering length is infinitely large [97]. The eigen value of the
hyperangular equation [we denote the hyperangular function by
f Wn ( )] is typically written in terms of ns , which—in turn—
determines the total energy of the system,

= + +n n( )E q s E2 1q ho, where nE q includes the center-of-
mass energy of E3 2ho , "E5 2,ho , and q is the hyperradial
quantum number, which takes the values = "q 0, 1, . Writing
the total wave function ψ as f Wn n

- - ( ) ( )( )R F RN
q

3 1 2 , the
hyperradial Schrödinger-like equation reads
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Solving the differential equation, one finds
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where n( )Lq
s denotes the associated Laguerre polynomial and

n ( )F Rq is normalized according to ò =n
¥ ∣ ( )∣F R Rd 1q0

2 . For the
ground state (q=0, n = 0, and no center-of-mass excitations),
the hyperradial solution becomes
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Comparing the power of aho on the right-hand side of
equation (120) with the power of aho in equation (125), we
deduce

a - + = +( ) ( )N N N s2 2 1 1 1260

or

a =
-
-( )

( )E E N
N N2 2 1

. 12700 ho

Using this reasoning, α can be estimated using the ground state
energy of the ( )N N2, 2 Fermi system. Selected α values,
obtained using the energies reported in [87], are shown in col-
umn 2 of table 3. Our first set of PIGS calculations use the value
of α reported in table 3. In a second set of calculations, α is
varied and optimized using the PIGS results themselves. We
emphasize that the trial function constructed above provides a
fairly descent description of the hyperradial degree of freedom.
The hyperangular degrees of freedom are, however, less well
described; we return to this point below.

Using a = 0.505 and t = -( )Eho
1, the symbols with

error bars in figure 8 show the PIGS energies for the
=( ) ( )N N2, 2 2, 2 system for four different tD . The solid

line shows a second-order fit of the form t+ Da b 2. The
extrapolated tD = 0 energy is ( )E5.0038 12 ho, where the
error bar in brackets represents the fit uncertainty, which takes
the error bars of the finite tD PIGS energies into account. For
comparison, the dotted line shows a fourth-order fit of the
form t t+ D + Da b c2 4. The extrapolated tD = 0 energy is

( )E5.0069 29 ho, where the error bar in brackets represents—as
before—the fit uncertainty, which takes the error bars of the
finite tD PIGS energies into account. The fact that the
extrapolated second- and fourth-order energies agree within
error bars suggests that the extrapolated energies are reason-
ably good. This is confirmed by comparing with the highly
accurate energy EECG obtained via a basis set expansion
approach, which employs explicitly correlated Gaussians (see
column6 of table 3). Assuming, for a moment, that the
t = -( )Eho

1 result is identical to that for the t ¥ limit, we
can estimate the systematic uncertainties of the second- and
fourth-order extrapolations. The fourth-order energy agrees
with EECG (see table 3) within error bars while the second-
order energy deviates by about four standard deviations. We
thus estimate that the systematic error that originates from the
second-order fit is of the order of 0.1%. This suggests that one
needs to use the fourth- or an even higher-order extrapolation
scheme or perform additional calculations for smaller tD if
the statistical error is of the order of 0.1% or smaller.

To analyze how close the t = -( )Eho
1 energy is to the

t ¥ limit, circles with error bars in figure 9 show
the extrapolated energy, using the fourth-order scheme, of the
( )2, 2 system for various τ; as before, α is set to 0.505. As
expected, the energy decreases with increasing τ and flattens
out for large τ. To better show how the energy behaves with
increasing τ, the inset replots the extrapolated tD = 0 ener-
gies with error bars as a function of t1 . It can be seen that
the energies for the two smallest t1 (two largest τ) do not
agree within error bars. This means that, strictly speaking, the
large τ limit has not yet been reached. However, as discussed
further below, going to larger τ is rather challenging because

Figure 8. Illustration of the dependence of the PIGS energy on tD
for the ( )2, 2 system. The symbols with error bar show the PIGS
energy for t = -( )Eho

1, obtained using the trial function given in
equations (118)–(120) with a = 0.505. The solid and dotted lines
show second- and fourth-order fits to the energies (see text for
details).
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of the Fermi sign problem. This implies that, ultimately, the
accuracy of the PIGS energy is limited, as already alluded to
above, by the systematic error that originates from not going
to the t ¥ limit and not by the statistical error bars. For
the .N 6 systems, the computational time is chosen such
that the statistical error is of the order of the estimated sys-
tematic error; the reasoning behind this is that a smaller sta-
tistical error would not allow one to gain more insight into the
exact value of the energy.

For comparison, the crosses with error bars in the main
part of figure 9 show the extrapolated ( )2, 2 PIGS energies for
a = 1. These energies lie above those for a = 0.505 for all τ,
reflecting the fact that the trial function with a = 0.505
provides a better description of the ( )2, 2 system than the trial
function with a = 1. The difference between the PIGS
energies for the calculations with the two different α values
decreases with increasing τ, reflecting the fact that, in prin-
ciple, any trial function that has finite overlap with the exact
ground state wave function could be used. However, the
better yT , the smaller the resulting error bars.

To more systematically investigate the dependence of the
PIGS energy, and correspondingly the speed of the

convergence with increasing τ, on α, we fix τ at -( )E0.125 ho
1.

These small τ calculations are computationally comparatively
inexpensive and hence allow one to survey the α dependence
more exhaustively. Ultimately, one needs, of course, to go to
larger τ. However, to find the best α (or more generally, the
best trial function), it is often times sufficient to consider a
relatively small τ. Figure 10 shows the PIGS energy with
error bars as a function of a-1 for t = -( )E0.125 ho

1. The
lowest energy is obtained for α around 0.5, confirming our
choice of α based on the hyperspherical coordinate approach.
This suggests that the optimal α could alternatively be
determined iteratively. To this end, let us assume that the
ground state energy is unknown. One would then chose an
initial value of α to obtain a first PIGS energy estimate for
small τ. Using this (non-converged) PIGS energy, one would
obtain an improved α value using equation (127) and perform
another PIGS calculation. After a few iterations, the optimal α
value would be found.

As already alluded to, the Fermi sign problem limits the
maximum propagation time τ that can be reached with a finite
amount of computational resources. The symbols in figure 11
show the quantity S (see equation (110)), which appears in the
denominator of the expression for all observables, as a
function of τ for the ( )2, 2 system for the trial function with
a = 0.505. For this series of calculations, tD is fixed at
tD = -( )E0.125 ho

1, i.e. the number of time slices increases
with increasing τ. The solid line shows a fit to the data,
demonstrating that S decreases exponentially with increasing
τ or, equivalently, increasing number of time slices. An S
value close to 1 indicates that the sign problem is irrelevant.
The smaller S, the more severe the sign problem becomes. As
a consequence, for a given τ, there exists a maximum tD for
which the calculation is feasible. For smaller tD , the errors
that originate from the sign problem are too large to be useful.
For large τ, the smallest tD that can be treated reliably might
not be sufficiently small to allow for a reliable extrapolation
to tD = 0. For the ( )2, 2 system, e.g., t = -( )Eho

1 is a good
compromise. The excited state contributions have, essentially,
decayed and the extrapolation to the tD = 0 limit is reliable.

Figure 9. Illustration of the dependence of the PIGS energy on the
propagation time τ for the ( )2, 2 system. The circles and crosses
show the extrapolated tD = 0 energies with error bars (the fourth-
order scheme is used), obtained using the trial function given in
equations (118)–(120) with a = 0.505 and 1, respectively. The inset
replots the energies as a function of t1 .

Figure 10. Illustration of the dependence of the PIGS energy for the
( )2, 2 system on the trial function parameter α. The symbols show
the extrapolated tD = 0 energies with error bars (the fourth-order
scheme is used) for t = -( )E0.125 ho

1 as a function of a1 , obtained
using the trial function given in equations (118)–(120).

Figure 11. Symbols show the quantity S, equation (110), as a
function of τ for the ( )2, 2 system. The error bars are smaller than the
symbol size. The time step tD is fixed at -( )E0.125 ho

1. As a guide to
the eye, the solid line connects consecutive data points.
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In addition to the ( )2, 2 system, we treat the ( )3, 3 , ( )4, 4 ,
and ( )5, 5 systems using the α values determined from the
known ground state energies via equation (127). The value of
τ (see column3 of table 3) is chosen such that the estimated
systematic error, due to the use of a finite τ, is comparable to
or smaller than the error of the extrapolated tD = 0 energy
for this τ (see columns4–6 of table 3). As N goes up, the
propagation time τ is chosen to be smaller and smaller (see
table 3). The reason is that the simulations for larger N are
more computationally demanding since the Fermi sign pro-
blem becomes more severe with increasing N. This means
that we are limited by the number of time slices and, corre-
spondingly, the largest τ we can use. The number of time
slices +n2 1 considered in the tD 0 extrapolation are
chosen based on our detailed analysis of the ( )2, 2 system.
Because of the relatively small τ considered, the energies
reported for the =N 2 4 and 5 systems should be regarded,
within error bars, as variational upper bounds. Our ( )3, 3
energy agrees, within error bars, with the basis set expansion
energy EECG but lies slightly below the diffusion Monte
Carlo energy EDMC. For the ( )4, 4 and ( )5, 5 systems, the
PIGS energies agree, within error bars, with EECG and EDMC.
For the ( )5, 5 system, we performed an additional calculation
using—as before—t = -( )E0.125 ho

1 but using an α value
that is larger than that listed in table 3, namely a = 0.335.
The extrapolated tD = 0 PIGS energy is ( )E16.22 14 ho,
which agrees within error bars with our result listed in table 3.
The larger error bar reflects the fact that the larger α value
provides a less good trial function.

The trial function used so far (see equations (118)–(120))
contains a single adjustable parameter, namely α, that pri-
marily determines the correlations in the hyperradial degree of
freedom. Our goal is now to design a trial function that
provides an improved description of the hyperangular degrees
of freedom. In doing so, we are guided by the analytically
known wave function of the harmonically trapped ( )2, 1
system with P = +( ) ( )L, 0, 1 symmetry at unitarity [98].
The hyperangular part of the wave function that yields the
lowest energy with +( )0, 1 symmetry is proportional to

q p q- -( ˆ ) (¯ ( )) ( ) ( )P s1 sin 2 sin 2 , 12812 0 1 1

where q = ( ( ¯))r Rarcsin 21 13 , =s̄ 2.1660 , and =R̄2

å < r Nj k jk
2 . Application of P̂12 changes q1 into q2, where q =2

( ( ¯))r Rarcsin 223 . The factor q p-(¯ ( ))ssin 20 1 enhances
the probability to find two particles at vanishing hyperangle
q1, i.e. at vanishing distance between the unlike particles 1 and
3. In the non-interacting limit, s̄0 is equal to 4, which implies
that the probability to find two particles at vanishing hyper-
angle q1 vanishes. The quantities R̄ and s̄0, which are defined
by excluding the center-of-mass degrees of freedom, are
related to R and s0, = -¯ ( )R R N R2 2

cm
2 and = -s̄ s 3 20 0 .

Motivated by the hyperangular wave function of the
( )2, 1 system with +( )0, 1 symmetry at unitarity, we consider
the following alternative form of the trial function,

y = Fa b g( ) ( ) ( )f R R , 129T trap , ,

where

(
b q p q

q
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-
a b g

a

a
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+
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ho
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1

2 1

and q = +( ( ¯))r Rarcsin 2j j N j, 2 . The factor q g+( )cos j
1 is

introduced to increase the tunability of the trial function. As
before, the optimal value of α is obtained by matching to the
known hyperradial solution. This yields a = 0.166. The
values of β and γ, in contrast, are determined by performing
PIGS simulations for small τ.

Considering the ( )2, 2 system and using a = 2.5091,
b = 1.1, and g = 2, we obtain the extrapolated tD = 0 PIGS
energy of ( )E5.022 3 ho for t = -( )E0.0625 ho

1. This energy is
significantly lower than the PIGS energy of ( )E5.193 4 ho that
we obtained using the correlation factor Fa( )R for the same τ.
For t = -( )E0.25 ho

1, we obtain ( )E5.011 8 ho, which agrees
within error bars with the ground state energy EECG (see
table 3). Considering the ( )3, 3 system and using the trial
parameters a = 5.837, b = 1.5, and g = 8, we obtain the
extrapolated tD = 0 PIGS energy of ( )E8.357 8 ho for
t = -( )E0.25 ho

1. For comparison, the ( )3, 3 PIGS energy
reported in table 3 is for a larger τ, namely t = -( )E0.5 ho

1. For
the ( )4, 4 and ( )5, 5 systems, the trial function with the corre-
lation factor Fa b g, , did not yield an improved energy compared
to that forFa. The reason could be that the trial parameters were
not fully optimized or that the degrees of freedom of the larger
systems are less well described by the trial function (e.g., that
three- and higher-body correlations are needed).

In addition to the energies, we use the PIGS approach to
calculate structural properties. The scaled pair distribution
functions reported below are obtained for a finite tD ; no
extrapolation to the tD = 0 limit was performed. To determine
a suitable tD , we consider the ( )2, 2 system and perform cal-
culations for t = -( )E0.25 ho

1 using three different tD , i.e.
tD = -( )E0.25 ho

1, -( )E0.125 ho
1, and -( )E0.0625 ho

1. We find
that the scaled pair distribution function for tD = -( )E0.25 ho

1

differs slightly from those for tD = -( )E0.125 ho
1 and tD =

-( )E0.0625 ho
1. However, no visual difference is observed

between the scaled pair distribution functions for tD =
-( )E0.125 ho

1 and tD = -( )E0.0625 ho
1. Motivated by this

observation, we calculate the scaled pair distribution functions
for the spin-balanced systems with -N 2 5 using
tD = -( )E0.125 ho

1. The propagation times and trial functions
are the same as those used to obtain the energies reported in
table 3.

Solid lines in figures 12(a)–(d) show the resulting scaled
pair distribution function for the spin-balanced systems with

= –N 4 10. For comparison, the dashed lines show the scaled
pair distribution function obtained from basis set calculations
for an attractive two-body Gaussian potential with infinitely
large s-wave scattering length and effective range of
approximately a0.12 ho (the range is a0.06 ho) [87]. The
Gaussian potential used supports exactly one zero-energy
two-body bound state in free space. If the effective range were
taken to zero, the two different approaches should yield the
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same result. As can be seen from figure 12, the zero-range
results deviate a bit from the finite-range results at small
interparticle distances; in particular, the scaled pair distribu-
tion functions take a finite value for vanishing interparticle
distance if the zero-range interaction model is used and go to
zero if the finite-range interaction model is used. At larger
interparticle distances, the agreement between the dashed and
solid lines is quite good, suggesting that the PIGS scaled pair
distribution functions are, indeed, quite well converged
for 2r a0.5 ho.

To check the convergence at small interparticle distances,
we report the contact C obtained from the r=0 value of the
scaled pair distribution function [99],

p p= ( ) ( )C n n r P r4 lim 4 . 131r1 2 0
2

12

The resulting contacts are summarized in table 4. The contact
calculated by the PIGS approach is, for all N considered, larger
than the contact calculated by extrapolating basis set expansion
results (namely, the slope of the energy with respect to the
inverse of the s-wave scattering length) for finite-range inter-
actions to the zero-range limit. As N 2 increases from 2 to 5,
the difference between the two sets of results increases from
about two to about six standard deviations. The numerical

determination of the contact through the scaled pair distribution
function is, in general, quite challenging since the contact
probes—if determined in this manner—a small portion of the
Hilbert space. As a consequence, the convergence of the contact
can be slow. It is presently unclear which set of results is more
reliable and if, possibly, the errorbars of the results obtained by
either of the two methods was underestimated: the basis set
expansion results may be ‘contaminated’ by basis set extra-
polation and zero-range extrapolation errors while the PIGS
results may be ‘contaminated’ by finite propagation time and
finite time step errors.

5.3. Non-interacting Fermi gas with a single impurity

This section considers a non-interacting Fermi gas with a
single impurity, i.e. the = -( ) ( )n n N, 1, 11 2 system with

= –N 3 5. In a zeroth-order approximation, one can think of
this system as consisting of one up–down pair and -N 2
unpaired spin-up atoms. Of course, this picture needs to be
refined to account for the fact that the system contains -N 1
identical fermions and for the fact that the presence of addi-
tional spin-up fermions ‘disturbs’ the single pair. Never-
theless, the simple picture correctly suggests that the ground
state of the -( )N 1, 1 system does not have

P = +( ) ( )L, 0, 1 symmetry. Rather, the ground state of the
( )2, 1 , ( )3, 1 and ( )4, 1 systems has P = -( ) ( )L, 1, 1 ,

+( )1, 1 and -( )0, 1 symmetry [98, 100, 101]. Roughly, this
can be understood by realizing that the ( )2, 1 , ( )3, 1 and ( )4, 1
systems contain one, two and three unpaired spin-up atoms,
each of which carry one quantum of angular momentum (the
p-shell is being filled). Thus, due to the angular momentum
carried by the single unpaired spin-up atom the ( )2, 1 system
has -( )1, 1 symmetry. In the ( )3, 1 system, the angular
momenta of each of the two unpaired atoms can couple to an
angular momentum 0, 1, or 2, with the parity being even. The

+( )1, 1 channel turns out to have the lowest energy [101].
Last, in the ( )4, 1 system, the angular momenta of each of the
three unpaired atoms can couple to an angular momentum 0,
1, 2, or 3, with the parity being odd. Consistent with the idea
of a closed shell configuration, the -( )0, 1 channel turns out
to have the lowest energy.

As our first application of the PIGS approach to spin-
imbalanced systems, we treat the ( )2, 1 system with

P = +( ) ( )L, 0, 1 symmetry. This application illustrates that
the PIGS approach can be used to describe the energetically
lowest-lying state (not the ‘absolute ground state’) of a given
symmetry. Following the logic that motivated the trial func-
tion given in equations (118)–(120), we write

y = Fa¢( ) ( ) ( ) ( )fR R R , 132T trap

where

(F =a
a

a

¢
- ¢ - - + =

- ¢⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ˆ ( )

( )( )a
r

r
R . 133N N j

N
j N

N
ho

2 3 2 1 2
1

,

1,

Using a relatively small τ, namely t = -( )E0.25 ho
1, table 5

shows the extrapolated tD = 0 energy. It lies about six sigma
above the exact energy obtained within the hyperspherical

Figure 12. Scaled pair distribution functions p ( )r P r4 2
12 for the (a)

( )2, 2 , (b) ( )3, 3 , (c) ( )4, 4 , and (d) ( )5, 5 systems at unitarity. The
solid lines show our PIGS results for the model Hamiltonian with
two-body zero-range interactions. The results are obtained using the
propagation times and trial function parameters listed in table 3. The
imaginary time step is set to tD = -( )E0.125 ho

1. For comparison,
the dashed lines show basis set expansion based results [87] for an
attractive two-body Gaussian interaction with finite effective range
(see text for details).

Table 4. Contact for spin-balanced two-component Fermi gas
( -N 2 5) with zero-range interactions at unitarity. Column 2
reports the value of the contact CPIGS obtained from our PIGS
simulations with tD = -( )E0.125 ho

1. The error reported does not
include the systematic error introduced by not extrapolating to zero
tD . Column 3 shows the contact CECG from the literature, obtained

by extrapolating the contact obtained by the ECG approach for
finite-range interactions to the zero-range limit [87].

( )n n,1 2 C aPIGS ho C aECG ho

(2, 2) 25.91(6) 25.74(1)
(3, 3) 42.26(5) 40.39(8)
(4, 4) 59.5(2) 55.4(5)
(5, 5) 79.3(3) 72.3(8)
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coordinate approach [98]. If we repeated the calculation for
larger τ, we would expect to obtain a PIGS energy closer to
the exact energy. To prove that the lowest +( )0, 1 energy can
be obtained exactly within the PIGS approach, i.e. to prove
that the PIGS approach does, indeed, preserve the symmetry
of the trial function, we use the exact (analytically known)
eigen state [98] as the trial function. The resulting extra-
polated tD = 0 energy (see table 5) agrees to within error
bars with the exact energy.

As a proof-of-principle, we apply the PIGS approach to
the ( )2, 1 system with P = -( ) ( )L, 1, 1 symmetry at uni-
tarity. Knowing that the orbital angular momentum is carried
by the Jacobi vector r13,2 when particles 1 and 3 form a pair
and by the Jacobi vector r23,1 when particles 2 and 3 form a
pair [98, 100], we write

(y =
a

-
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

¯ ˆ ( )a f
R

a

x

r
R R . 134T ho

9 2
trap

ho

13,2

13,2

Owing to the three-fold degeneracy of L=1 states, alter-
natively one can use y13,2 or z13,2 instead of x13,2. In an
equivalent formulation, the term x r13,2 13,2 in equation (134)
is replaced by (ˆ )Y rm1, 13,2l , where Y m1, l denotes the spherical
harmonic and ml can take the values ±1 and 0. Since the
spherical harmonics with ¹m 0l are complex, spherical
harmonics are less convenient from a numerical/imple-
mentation perspective than the real version used in
equation (134). Using equation (134) with t = -( )E0.5 ho

1, we
find the extrapolated tD = 0 energy = ( )E E4.276 9PIGS ho,
which agrees, within error bars, with the exact zero-range
energy from [98] (see row 3 of table 5).

The above trial function can be extended to the ( )3, 1
system. Assuming the formation of a pair consisting of atoms 1
and 4, one quantum of orbital angular momentum each is
assumed to be carried by the vectors r14,2 and r14,3. Coupling

( )Y rm1, 14,21 and ( )Y rm1, 14,32 such that the resulting function has
P = -( ) ( )L, 1, 1 symmetry, we obtain the desired correlation

factor. Since we prefer to work with real quantities, we write

(y =
´a

-
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

¯ ˆ ( ) · ˆ
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a f
R

a r r
R R

r r z
,

135

T ho
6

trap
ho

14,2 14,3

14,2 14,3

where the dot product serves to select the z-component of the
vector that results when taking the cross product. Instead of the
z-component, the x- or y-components can be used. For the ( )4, 1
system, we use

(y =
´a

-
⎛
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T ho
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15,2 15,3 15,4

15,2 15,3 15,4

which has the desired P = -( ) ( )L, 0, 1 symmetry. Alter-
natively, one could use

(y = ´
a

-
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

¯ ˆ (( ) · )

( )

a f
R
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R R r r r .

137

T ho
21 2

trap
ho

15,2 15,3 15,4

The resulting extrapolated tD = 0 energies for the ( )3, 1 and
( )4, 1 systems are reported in table 6. The ( )3, 1 PIGS energy
deviates by two sigma from the highly accurate basis set
expansion energy EECG. The small disagreement may be due to
the fact that τ is not quite large enough or that the error bar of

Table 5. Spin-imbalanced fermionic ( )2, 1 system with zero-range interactions at unitarity. Columns 2–4 report the propagation time, the n
used (the number of time slices is 2n+1), and the trial function employed for two different symmetries (see column 1). Column 5 shows the
resulting PIGS energy with error bars. For the +( )0, 1 channel, no extrapolation to the tD = 0 limit was performed. For the -( )1, 1 channel,
a second-order extrapolation was used. For comparison, column 6 shows the exact zero-range energies obtained using the formalism
developed in [98].

P( )L, tEho n used Trial function E EPIGS ho E Eexact ho

+( )0, 1 0.25 4 Equation (132), a = 1.66622 4.687(4) 4.66622
+( )0, 1 0.25 4 Equation (128) 4.676(10) 4.66622
-( )1, 1 0.5 2,4 Equation (134), a = 0.772724 4.276(9) 4.27272

Table 6. Spin-imbalanced fermionic -( )N 1, 1 system (N=4 and 5) with zero-range interactions at unitarity. Column1 lists the -( )N 1, 1
system considered. The symmetry of the ground state is reported in column2. Columns 3, 4, 5, and 6 report the propagation time, the n used
(2n+1 is the number of time slices included in the extrapolation of the energy to tD = 0), the value of α, and the equation number of the trial
function used. Column 7 shows the resulting extrapolated tD = 0 PIGS energy with error bars, obtained using a second-order extrapolation.
For comparison, column 8 reports energies obtained using the explicitly correlated Gaussian approach [101, 102]; the energies, which are
denoted by EECG, are obtained by extrapolating a series of finite-range energies to the zero-range limit. Column 9 reports the ( )4, 1 energy
EDMC for a square-well potential with range =r a0.010 ho obtained using the diffusion Monte Carlo method [103]; no extrapolation to the
zero-range limit was done. The uncertainties for the ECG and DMC calculations are, according to [101–103], in the last digit reported.

P( )L, tEho n α yT E EPIGS ho E EECG ho E EDMC ho

( )3, 1 +( )1, 1 0.5 4, 8 0.791 (135) 6.60(1) 6.5819
( )4, 1 -( )0, 1 0.5 2, 4 0.667 (136) 8.93(7) 8.95 8.93
( )4, 1 -( )0, 1 1 4, 8 0 (137) 8.92(4) 8.95 8.93
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the extrapolated energy is, in fact, slightly larger than what is
reported in table 6. The ( )4, 1 PIGS energies for
t = -( )E0.5 ho

1 and t = -( )Eho
1 agree, within error bars, with

the energy EDMC. Since the diffusion Monte Carlo energy was
not extrapolated to the zero-range limit, the true zero-range
energy is probably somewhat smaller than EDMC.

In addition to the energy, we determine the contact C from
the r=0 behavior of the scaled pair distribution function (see
equation (131)). In general, the convergence rate of the energy
and that of other observables can be different. For the case at
hand, namely the contact, this can be understood by realizing
that only a small fraction of the wave function amplitude is
located at small r. Thus, while the energies shown in table 6
appear to be converged, the contact may not be. Indeed, this is
what we find. Figure 13 shows the contact of the ( )3, 1 system
as a function of t-1. The calculations are performed for
tD = -( )E0.125 ho

1. The contacts for the two largest τ values
considered differ by roughly 2%. For even larger τ, the curve
should flatten out. Thus, we can interpret our calculations as
providing a lower bound on C, . -( )C a10.7 ho

1. Indeed, cal-
culations that employ a correlated Gaussian basis set yield a
contact of = -( )( )C a10.84 2 ho

1 (see the dashed horizontal line
in figure 13), which is close to the PIGS contact for the largest τ
considered. For t = -( )E0.5 ho

1, we performed an additional
calculation for a smaller tD , i.e. for tD = -( )E0.0625 ho

1. The
results for tD = -( )E0.125 ho

1 and tD = -( )E0.0625 ho
1 differ

by 0.4%, which is small compared to the error introduced by
not extrapolating to the t = ¥ limit.

6. Summary and outlook

This article provided a detailed introduction to the path int-
egral ground state Monte Carlo (PIGS) algorithm. Imple-
mentation details and convergence properties were discussed
using general arguments and subsequently illustrated for
selected systems and observables. While the primary focus
was on the PIGS approach, several aspects are applicable
more broadly. For example, the discussion of the error ana-
lysis is relevant to essentially all Monte Carlo algorithms and

many features of the path generation apply also to the finite-
temperature path integral Monte Carlo approach.

The PIGS algorithm takes a trial function, which is
selected by the simulator, and propagates it in imaginary time.
For sufficiently large imaginary time τ, the lowest eigen state
of the system Hamiltonian, which has finite overlap with the
trial function, is being projected out. A crucial question is
how to assess whether the resulting eigen energy and other
observables are truly converged. This question is particularly
pressing for fermionic systems, for which the largest τ con-
sidered is restricted by numerical instabilities due to the Fermi
sign problem. In the absence of identical fermions, the
convergence analysis is relatively simple since there are
essentially no restrictions on the τ that can be considered. The
applications to fermions considered in this tutorial employed
a multi-faceted approach to the convergence analysis. For
small systems, comparisons with established literature results
were used as a benchmark. For larger systems, an analysis of
the error bars was used to establish where the Fermi sign
problem sets in. For τ not noticably impacted by the Fermi
sign problem, the resulting energies, extrapolated to the infi-
nite time slice limit, provided variational upper bounds.
Additionally, the calculations were performed for different
trial functions and the runs were checked for consistency.
Ultimately, there is no guarantee that the resulting obser-
vables are not biased by the trial function. However, the
various checks provide one with tools for (roughly) estimat-
ing and minimizing the variational bias.

The sample applications presented concern strongly
correlated Fermi gases. In cold atom experiments, the two-
body van der Waals length is typically much smaller than the
average interparticle spacing and the two-body s-wave scat-
tering length (for two-component Fermi systems, this is the
interspecies (and not the intraspecies) scattering length).
Thus, cold atom systems realize, to a very good approx-
imation, idealized systems in which the two-body interaction
range is zero. From a theoretical point of view, a vanishing
two-body range is particularly interesting as this implies that
the range drops out of the problem. For infinitely large two-
body s-wave scattering length, e.g., the system exhibits a
scale invariance, reflecting underlying symmetries of the
Hamiltonian. While scale-invariance based arguments and
formulations have led to a great deal of insight into these
paradigmatic, strongly correlated systems, few analytical or
numerical techniques exist that can reliably predict the
energy, Tan contact, superfluid fraction, or other observables.
The PIGS approach treats two-body zero-range interactions
by building the exact two-body Bethe–Peierls boundary
condition into the propagator using the pair product approx-
imation. For fermions, the treatment is limited to small
number of particles since the Fermi sign problem becomes
exponentially more severe with increasing number of iden-
tical fermions. The system sizes considered in this article are
the same as those that have been treated by the explicitly
correlated Gaussian basis set expansion approach [87]. For
both (the PIGS and basis set expansion approach), the com-
putational effort increases tremendously as N is increased
beyond what is considered in this article.

Figure 13. Symbols show the contact C of the ( )3, 1 system as a
function of t-1. The time step tD is fixed at -( )E0.125 ho

1. As a
guide to the eye, the symbols are connected by a solid line. For
comparison, the dashed horizontal line shows the contact
= -( )( )C a10.84 2 ho

1, obtained by extrapolating basis set expansion
results for finite-range interactions to the zero-range limit.
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Future applications of the PIGS approach to systems with
zero-range interactions may include unequal-mass two-
component Fermi gases, Fermi gases in non-spherically
symmetric external traps (including effectively low-dimen-
sional systems), or Bose droplets without and with an
impurity. These applications can be tackled with the tech-
nology already developed. An interesting and challenging
future development is the treatment of spin–orbit coupled
systems, where the spatial degrees of freedom are coupled to
the spin degrees of freedom. It will be interesting to marry the
treatment of spin degrees of freedom with the use of two-body
zero-range interactions.
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