Supplemental Materials: Observation of Quantum Interference and Coherent Control in a Photo-Chemical Reaction

David B. Blasing, ${ }^{1}$ Jesús Pérez-Ríos, ${ }^{2}$ Yangqian Yan, ${ }^{1}$ Sourav
Dutta, ${ }^{1,3}$, Chuan-Hsun Li, ${ }^{4}$ Qi Zhou, ${ }^{1}$ and Yong P. Chen ${ }^{1,4,5}$
${ }^{1}$ Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
${ }^{2}$ School of Materials Sciences and Technology, Universidad del Turabo, Gurabo, Puerto Rico 00778
${ }^{3}$ Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
${ }^{4}$ School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
${ }^{5}$ Purdue Quantum Center, Purdue University, West Lafayette, IN 47907

(Dated: July 3, 2018)

For the dressed atoms scattering in the $\mid F=0, m_{F}=0>$ channel, the stimulated transition rate to the excited molecular state is

$$
\begin{equation*}
\Gamma_{\text {sup }} \propto \mid\left.\left\langle\phi_{m}\left(\vec{r}_{a b}\right)\right|\left\langle F=0, m_{F}=0 \mid \psi_{\text {scat }}\right\rangle\right|^{2} \tag{1}
\end{equation*}
$$

where $\left|\psi_{\text {scat }}\right\rangle$ denotes two body scattering wavefunction of the colliding atoms, including both the spin and relative spatial portions. The operator $\left\langle F=0, m_{F}=0\right|$ selects the spatial portion of the scattering wavefunction with total spin $\left|F=0, m_{F}=0\right\rangle$ (the only total spin channel contributing to the PA transition we chose). The spatial wavefunctions for molecule and the bare scattering state in the $\left|F=0, m_{F}=0\right\rangle$ channel are denoted as $\varphi_{m}\left(\vec{r}_{a b}\right)$ and $\varphi_{F=0}\left(\vec{r}_{a b}\right)$ respectively, both with relative coordinate

$$
\begin{equation*}
\vec{r}_{a b}=\vec{r}_{a}-\vec{r}_{b} \tag{2}
\end{equation*}
$$

where \vec{r}_{a} and \vec{r}_{b} denote the spatial coordinates of the two atoms. Since the BECs in the experiment are always loaded to the single particle ground state with quasimomentum $\vec{q}=\left(0, q_{m i n}, 0\right)$, the total wavefunction of one particle (denoted with a subscript) is

$$
\begin{equation*}
C_{0} e^{i \overrightarrow{\vec{q}} \cdot \vec{r}_{a}}|1,0\rangle_{a}+C_{1} e^{i\left(\vec{q}+\vec{k}_{r}\right) \cdot \vec{r}_{a}}|1,1\rangle_{a}+C_{-1} e^{i\left(\vec{q}-\vec{k}_{r}\right) \cdot \vec{r}_{a}}|1,-1\rangle_{a} \tag{3}
\end{equation*}
$$

where $\vec{k}_{r}=\left(0,-2 k_{r}, 0\right)$. The product state of two such particles, denoted a and b respectively, is written as

$$
\begin{align*}
& e^{i \vec{q} \cdot\left(\vec{r}_{a}+\vec{r}_{b}\right)}\left(C_{0}^{2}|1,0\rangle_{a}|1,0\rangle_{b}+C_{1} C_{-1} e^{i \vec{k}_{r} \cdot\left(\vec{r}_{a}-\vec{r}_{b}\right)}|1,1\rangle_{a}|1,-1\rangle_{b}+C_{1} C_{-1} e^{i \vec{k}_{r} \cdot\left(\vec{r}_{b}-\vec{r}_{a}\right)}|1,-1\rangle_{a}|1,1\rangle_{b}+\ldots\right) \\
= & e^{i \vec{q} \cdot\left(\vec{r}_{a}+\vec{r}_{b}\right)}\left[C_{0}^{2}\left(\sqrt{\frac{2}{3}}|2,0\rangle-\sqrt{\frac{1}{3}}|0,0\rangle\right)\right. \\
& +C_{1} C_{-1} e^{i \vec{k}_{r} \cdot\left(\vec{r}_{a}-\vec{r}_{b}\right)}\left(\sqrt{\frac{1}{6}}|2,0\rangle-\sqrt{\frac{1}{2}}|1,0\rangle+\sqrt{\frac{1}{3}}|0,0\rangle\right) \\
& \left.+C_{1} C_{-1} e^{i \vec{k}_{r} \cdot\left(\vec{r}_{b}-\vec{r}_{a}\right)}\left(\sqrt{\frac{1}{6}}|2,0\rangle+\sqrt{\frac{1}{2}}|1,0\rangle+\sqrt{\frac{1}{3}}|0,0\rangle\right)+\ldots\right] \tag{4}\\
= & e^{i \vec{q} \cdot\left(\vec{r}_{a}+\vec{r}_{b}\right)}\left[-\sqrt{\frac{1}{3}} C_{0}^{2}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{i \vec{k}_{r} \cdot\left(\vec{r}_{b}-\vec{r}_{a}\right)}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{i \vec{k}_{r} \cdot\left(\vec{r}_{a}-\vec{r}_{b}\right)}\right]|0,0\rangle+\ldots \\
= & e^{i \vec{q} \cdot\left(\vec{r}_{a}+\vec{r}_{b}\right)}\left[-\sqrt{\frac{1}{3}} C_{0}^{2}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{-i \vec{k}_{r} \cdot \vec{r}_{a b}}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{i \vec{k}_{r} \cdot \vec{r}_{a b}}\right]|0,0\rangle+\ldots
\end{align*}
$$

where kets with subscripts, a or b, denote the spin states of the two single atoms respectively, and the ones without subscripts correspond to the total spins of two particles. In our model, $\left|\psi_{\text {scat }}\right\rangle$ then is

$$
\begin{equation*}
\left[-\sqrt{\frac{1}{3}} C_{0}^{2}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{-i \vec{k}_{r} \cdot \vec{r}_{a b}}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{i \vec{k}_{r} \cdot \vec{r}_{a b}}\right] \varphi_{F=0}\left(\vec{r}_{a b}\right)|0,0\rangle+\ldots \tag{5}
\end{equation*}
$$

where we have multiplied the corresponding terms in the product state by $\varphi_{F=0}\left(\vec{r}_{a b}\right)$, the relevant spatial wavefunction for the $F=0$ channel, and, we have also suppressed the center of mass term $e^{i \vec{q} \cdot\left(\vec{r}_{a}+\vec{r}_{b}\right)}$ as it is an overall phase. The
... denotes projections of the scattering state that does not contribute to the PA transition we chose. To describe our experiment, we project $\left|\psi_{\text {scat }}\right\rangle$ to include only the portion with $\left|F=0, m_{F}=0\right\rangle$:

$$
\begin{equation*}
\left\langle F=0, m_{F}=0 \mid \psi_{\text {scat }}\right\rangle=\left[-\sqrt{\frac{1}{3}} C_{0}^{2}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{-i \vec{k}_{r} \cdot \vec{r}_{a b}}+\sqrt{\frac{1}{3}} C_{1} C_{-1} e^{i \vec{k}_{r} \cdot \vec{r}_{a b}}\right] \varphi_{F=0}\left(\vec{r}_{a b}\right) \tag{6}
\end{equation*}
$$

Therefore according to Eq. (1) we have
$\Gamma_{s u p} \propto\left|-\frac{C_{0}^{2}}{\sqrt{3}}\left(\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right)\right)+\frac{C_{1} C_{-1}}{\sqrt{3}}\left(\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right) e^{i \vec{k}_{r} \cdot \vec{r}_{a b}}+\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right) e^{-i \vec{k}_{r} \cdot \vec{r}_{a b}}\right)\right|^{2}$,
where inside the integrals representing the Franck-Condon overlap, we have used $\varphi_{F=0}\left(\vec{r}_{a b}\right)$, the bare spatial wavefunction for scattering along $F=0$, and the additional phases associated with the Raman beams weighted by the appropriate superposition coefficients. This is justifiable since the size of our molecule is $\sim 10^{-3} \lambda_{R}$ (recall that $\lambda_{R}=2 \pi / k_{r} \approx 15000 a_{0}$), so $\vec{k}_{r} \cdot \vec{r}_{a b}$ is negligibly small. Since the Franck-Condon overlap integrals are determined only by the short-range behavior (relative to the λ_{R} scale), then $\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right) e^{i \vec{k}_{r} \cdot \vec{r}_{a b}} \approx$ $\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right) e^{-i \vec{k}_{r} \cdot \vec{r}_{a b}} \approx \int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right)$, therefore,

$$
\begin{equation*}
\Gamma_{s u p} \propto \frac{1}{3}\left|\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right)\right|^{2}\left|-C_{0}^{2}+2 C_{1} C_{-1}\right|^{2} \tag{8}
\end{equation*}
$$

If we let the stimulated rate for two particles with atomic spin state $\left|f=0, m_{f}=0\right\rangle$ (like when $C_{0}=1$, and $C_{ \pm 1}=0$) be denoted by $\Gamma_{0,0}$ and note that they have a projection along $\left|F=0, m_{F}=0\right\rangle$ with CG coefficient $1 / \sqrt{3}$, then:

$$
\begin{equation*}
\Gamma_{0,0} \propto \frac{1}{3}\left|\int d \vec{r}_{a b} \varphi_{m}^{*}\left(\vec{r}_{a b}\right) \varphi_{F=0}\left(\vec{r}_{a b}\right)\right|^{2} \tag{9}
\end{equation*}
$$

Therefore, $\Gamma_{\text {sup }} / \Gamma_{0,0}=\left|-C_{0}^{2}+2 C_{1} C_{-1}\right|^{2}$. Recalling that $k_{\text {sup }} \propto \Gamma_{\text {sup }}$ (with a proportional factor here, as well as that in Eq. (1), that do not depend on the spin states of the colliding atoms [1]), we may then obtain Eq. 3 in the main text

$$
\begin{equation*}
k_{\text {sup }} / k_{0,0}=\left|C_{0}^{2}\right|^{2}+4\left|C_{-1} C_{+1}\right|^{2}-4 \operatorname{Re}\left[C_{0}^{2} C_{-1}^{*} C_{+1}^{*}\right] \tag{10}
\end{equation*}
$$

[1] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. Hecker Denschlag, Phys. Rev. Lett., 93, 12300 (2004).

