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For the dressed atoms scattering in the |F = 0,mF = 0 > channel, the stimulated transition rate to the excited
molecular state is

Γsup ∝ |〈φm(~rab)|〈F = 0,mF = 0|ψscat〉|2 (1)

where |ψscat〉 denotes two body scattering wavefunction of the colliding atoms, including both the spin and relative
spatial portions. The operator 〈F = 0,mF = 0| selects the spatial portion of the scattering wavefunction with
total spin |F = 0,mF = 0〉 (the only total spin channel contributing to the PA transition we chose). The spatial
wavefunctions for molecule and the bare scattering state in the |F = 0,mF = 0〉 channel are denoted as ϕm(~rab) and
ϕF=0(~rab) respectively, both with relative coordinate

~rab = ~ra − ~rb, (2)

where ~ra and ~rb denote the spatial coordinates of the two atoms. Since the BECs in the experiment are always
loaded to the single particle ground state with quasimomentum ~q = (0, qmin, 0), the total wavefunction of one particle
(denoted with a subscript) is
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where ~kr = (0,−2kr, 0). The product state of two such particles, denoted a and b respectively, is written as
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where kets with subscripts, a or b, denote the spin states of the two single atoms respectively, and the ones without
subscripts correspond to the total spins of two particles. In our model, |ψscat〉 then is
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where we have multiplied the corresponding terms in the product state by ϕF=0(~rab), the relevant spatial wavefunction
for the F = 0 channel, and, we have also suppressed the center of mass term ei~q·(~ra+~rb) as it is an overall phase. The
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. . . denotes projections of the scattering state that does not contribute to the PA transition we chose. To describe
our experiment, we project |ψscat〉 to include only the portion with |F = 0,mF = 0〉:
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Therefore according to Eq. (1) we have
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where inside the integrals representing the Franck-Condon overlap, we have used ϕF=0(~rab), the bare spatial wave-
function for scattering along F = 0, and the additional phases associated with the Raman beams weighted by
the appropriate superposition coefficients. This is justifiable since the size of our molecule is ∼ 10−3λR (recall

that λR = 2π/kr ≈ 15000 a0), so ~kr · ~rab is negligibly small. Since the Franck-Condon overlap integrals are

determined only by the short-range behavior (relative to the λR scale), then
∫

d~rabϕ
∗
m(~rab)ϕF=0(~rab)e

i~kr ·~rab ≈
∫

d~rabϕ
∗
m(~rab)ϕF=0(~rab)e

−i~kr ·~rab ≈
∫

d~rabϕ
∗
m(~rab)ϕF=0(~rab), therefore,

Γsup ∝ 1

3

∣

∣

∣

∫

d~rabϕ
∗

m(~rab)ϕF=0(~rab)
∣

∣

∣

2∣
∣

∣
− C2

0 + 2C1C−1

∣

∣

∣

2

. (8)

If we let the stimulated rate for two particles with atomic spin state |f = 0,mf = 0〉 (like when C0 = 1, and C±1 = 0)
be denoted by Γ0,0 and note that they have a projection along |F = 0,mF = 0〉 with CG coefficient 1/
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Therefore, Γsup/Γ0,0 = | − C2
0 + 2C1C−1|2. Recalling that ksup ∝ Γsup (with a proportional factor here, as well as

that in Eq. (1), that do not depend on the spin states of the colliding atoms [1]), we may then obtain Eq. 3 in the
main text

ksup/k0,0 = |C2
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