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Abstract
We present extensive new direct path-integral Monte Carlo results for electrons in quantum dots in
two and three dimensions. This allows us to investigate the nonclassical rotational inertia (NCRI)
of the system, and we find an abnormal negative quantum moment of inertia (2014 Phys. Rev. Lett.
112 235301) under some conditions. In addition, we study the structural properties by computing
a re-normalized, angular-resolved center-two particle correlation function. Remarkably, we find no
connection between the spatial structure and the NCRI, since the former can be nearly identical
for Fermi- and Bose-statistics for parameters where the superfluid fraction is diverging towards
negative infinity.

1. Introduction

The study of fermionic many-body systems at finite temperature constitutes a highly active field of research,
offering a plethora of interesting physical effects. Prominent examples include quantum liquids such as
ultracold 3He [1–5], which undergoes a pairing-induced superfluid phase transition at low temperature [6]
and exhibits an intriguing, non-trivial phonon-roton-maxon dispersion relation in the spectrum of
collective excitations [3–5]. A second relevant example is given by exotic warm dense matter [7–11], which
naturally occurs in astrophysical objects like brown dwarfs [12, 13] and giant planet interiors [14, 15], and
has been predicted to manifest on the pathway towards inertial confinement fusion [16].

A particularly interesting system is given by electrons in quantum dots [17], which are studied in the
present work. First and foremost, we mention that these exhibit a number of interesting physics, like the
quantum breathing mode response to a monopole excitation [18, 19], and the formation of Wigner
molecules [20] and even crystallization [21] at strong coupling. A further important research topic
regarding electrons in quantum dots is the investigation of addition energies [22–24], which can be directly
compared to experimental measurements [25]. Moreover, we mention the formation of vortices and their
dependence on the respective spatial structure [26, 27], and the rich interplay of the rotational inertia with a
strong external magnetic field [28].

From a theoretical perspective, the accurate description of all aforementioned systems requires to
simultaneously take into account (i) coupling effects due to the interactions, (ii) thermal excitations as a
result of the finite temperature, and (iii) quantum degeneracy effects like Pauli blocking since identical
fermions are indistinguishable. In addition, confined few-body systems [29] additionally require to take into
account the interplay between (i)–(iii) and (iv) the external potential, which, in the present study, is
modelled as a harmonic oscillator. Due to these challenges, electrons in quantum dots constitute a rigorous
benchmark that is often used to test novel many-body methods, e.g., references [30–39].
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In the present work, we use the direct path-integral Monte Carlo (PIMC) method [40, 41] without any
nodal constraints [42] to simulate electrons in both 2D and 3D harmonic confinements. Therefore, our
simulations are afflicted with the notorious fermion sign problem (FSP) [43–45] (in practice, we spend up
to O

(
104

)
CPUh for a single calculation), but are exact within the given Monte Carlo error bars, which

allows for a rigorous treatment of the intriguing interplay between the effects (i)–(iv) mentioned above. All
PIMC results are available online [46] and can be used e.g. to test new methods and approximations. From
a practical perspective, the PIMC method gives us direct access to the quantum moment of inertia—often
characterized in terms of the so-called superfluid fraction—of the system [47, 48], which exhibits a
remarkable abnormal divergence towards negative infinity in the case of fermions for some conditions
[49, 50]. This effect was first reported by Yan and Blume [49] for a short-range pair potential and
subsequently found by Dornheim [50] for quantum-dipole systems, and has been explained in terms of the
symmetry of the thermal density matrix. Here, we extend these considerations to electrons in quantum dots
and find analogous behaviour. In addition, we study the structural properties of the system using a
renormalised, angular-resolved center-two particle (C2P) correlation function [51], which efficiently takes
into account the rotational symmetry of the system. This allows us to resolve the interesting interplay
between quantum statistics and the Coulomb interaction between pairs of electrons, and to explore the
connection between the aforementioned abnormal superfluid fraction and the static structure.

The paper is organized as follows: in section 2, we introduce the relevant theoretical background
including the model system (1), the utilized PIMC simulation approach section 2.2, the estimation of the
nonclassical rotational inertia (NCRI) in terms of the superfluid fraction section 2.3, and finally the C2P
correlation function section 2.4. Section 3 is devoted to the presentation of our extensive new simulation
results, which we start by shortly revisiting the noninteracting system in section 3.1. Subsequently, we study
both the quantum moment of inertia and the structural properties of electrons in quantum dots, focusing
on the dependence on the temperature section 3.2, on the system-size section 3.3, and on the coupling
strength section 3.4. The paper is concluded with a concise summary and outlook in section 4.

2. Theory

2.1. Model system
We consider N spin-polarized electrons in both two- and three-dimensional quantum dots, which we model
by a simple harmonic potential [17]. This gives the Hamiltonian

Ĥ = −1

2

N∑
k=1

∇2
k +

1

2

N∑
k=1

r̂2
k +

N∑
k>l

λ

|r̂l − r̂k|
, (1)

where we assume oscillator units, corresponding to the characteristic length l0 =
√
�/mΩ (with Ω being

the trap frequency) and energy scale E0 = �Ω. The first term corresponds to the kinetic contribution K̂ and
the last two terms to the external potential and the Coulomb interaction, V̂ ext and Ŵ , respectively.
Moreover, the coupling constant λ can, in principle, be tuned in experiments [52].

2.2. Path-integral Monte Carlo
We use the direct PIMC method [53, 54], see reference [40] for an extensive review article. In a nutshell, the
basic idea behind PIMC is to stochastically sample the thermal density matrix in the canonical ensemble

ρ(R1,R2,β) = 〈R1|e−βĤ |R2〉, (2)

where Ĥ is the Hamiltonian, β = 1/kBT the inverse temperature, and R = (r1, . . . , rN)T contains the
coordinates of all N particles. While a direct evaluation of equation (2) is not possible as different
contributions to the full Hamiltonian do not commute, one makes use of a Trotter decomposition [55] into
P terms that are each given atP-times the original temperature. The resulting scheme becomes exact in the
limit of large P and the respective convergence has been carefully checked; see reference [56] for a detailed
discussion of different factorization schemes. The PIMC method thus allows for the quasi-exact evaluation
of thermal expectation values

〈Â〉 = Tr
(

e−βĤ Â
)

(3)

within the given Monte Carlo error bar, which scales as ΔA ∼ 1/
√

NMC with the number of Monte Carlo
samples NMC. In practice, we use a canonical adaption [57] of the worm algorithm presented by Boninsegni
et al [58, 59].

An additional obstacle regarding the PIMC simulations of fermions (i.e., particles obeying Fermi–Dirac
statistics such as electrons or protons) is given by the anti-symmetry of equation (2) under the exchange of

2



New J. Phys. 24 (2022) 113024 T Dornheim and Y Yan

particle coordinates [41]. First and foremost, negative terms cannot be interpreted as a probability
distribution, and the expectation value from equation (3) gets modified to [45]

〈Â〉 = 〈ÂŜ〉′

〈Ŝ〉′
, (4)

where 〈. . .〉′ denotes the expectation value computed from the absolute values of the density matrix, and Ŝ
measures the respective sign. In particular, the denominator of equation (2) is called the average sign S and
constitutes a straightforward measure for the amount of cancellation within the fermionic PIMC
simulation. This can easily be seen by considering the first-order term to the relative statistical uncertainty
[60],

ΔA

A
∼ 1

S
√

NMC
, (5)

which directly implies that the Monte Carlo error bar increases when the average sign S gets small. In fact, S
exponentially decreases both with the inverse temperature β and the system size N, which can be directly
translated to ΔA as

ΔA

A
∼ eβNΔf

√
NMC

, (6)

where Δf denotes the difference in the free energy density of the original
(
〈. . .〉

)
and the modified(

〈. . .〉′
)

systems. Equation (6) is the root of the infamous FSP [45], as the exponential increase of 〈A〉 can
only be compensated by increasing the compute time as 1/

√
NMC, which quickly becomes infeasible. In fact,

equation (6) constitutes the central computational bottleneck in our simulations and limits the feasible
system size to N � 10.

2.3. Nonclassical rotational inertia
Throughout the relevant literature [48–50, 52], the NCRI of a quantum system is characterized in terms of
the so-called superfluid fraction. In an actual superfluid [61], it is physically intuitive to use the Landau
two-fluid model, where the total density is decomposed into a normal part reacting to a rotation of the
system, and a superfluid part that remains unaffected,

n = nn + nsf. (7)

The corresponding superfluid fraction is then defined as the ratio of the superfluid to the total density,

γsf =
nsf

n
= 1 − I

Icl
, (8)

with I and Icl denoting the actual (i.e., quantum) and classical moments of inertia. Within the path-integral
picture, the former can be straightforwardly estimated as [61]

γsf =
4m2〈A2

z〉
β�2Icl

, (9)

which is often being referred to as the area estimator in the respective literature. In particular, equation (9)
depends on the area that is enclosed by the paths in the plane perpendicular to the rotational axis,

A =
1

2

N∑
k=1

P∑
i=1

(
rk,i × rk,i+1

)
, (10)

with rk,i being the coordinate of particle k on the imaginary-time slice i. For completeness, we note that for
an ideal (i.e., noninteracting) system, γsf can be computed semi-analytically [49, 62], see reference [50] for
the corresponding formulas.

Within the context of the present work, equation (8) constitutes a straightforward measure of the
impact of quantum effects onto the moment of inertia. In particular, it is easy to see that it holds γsf = 0 in
the classical limit where, by definition, it is I = Icl. Regarding the evaluation of γsf via the area estimator
given in equation (9), this limit is straightforwardly recovered as the area enclosed by the paths vanishes in
the case of point particles. One possible manifestation of quantum effects onto the moment of inertia is to
make it smaller, which is the standard case for Bose systems. This is indicated by γsf > 0 with the limit of
γsf implying a completely vanishing I. On the other hand, Yan and Blume [49] have pointed out that,
remarkably, quantum effects can actually increase the moment of inertia in certain confined Fermi systems;
this is reflected by γsf < 0. A negatively diverging superfluid fraction is thus the consequence of a diverging
quantum moment of inertia.

3
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Figure 1. Illustration of the C2P correlation function ρ2(r1, r2,α). Due to the rotational symmetry of the Hamiltonian
equation (1), the two-particle correlations only depend on the relative angle α and the respective distances to the center of the
trap. [64] John Wiley & Sons. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Let us conclude this discussion of NCRI by re-iterating our earlier point that a non-zero superfluid
fraction as it is defined in equation (9) does not necessarily indicate the usual phenomenon of superfluidity
that manifests for example as a frictionless flow in ultracold 4He [40]. In fact, superfluidity naturally
emerges as a long-range order in the off-diagonal density matrix [63], which is not possible for the small
system sizes considered in this work. Therefore, one should interpret it strictly in terms of NCRI, i.e., as a
quantum effect on the moment of inertia, as it has been introduced above. Still, since the concept and
definition of the superfluid fraction are well-known from previous studies [48–50, 52, 61], we will stick to it
throughout this work as well.

2.4. Structural properties
The second central aim of the present work is the investigation of the impact of quantum statistics on the
structural properties of electrons in quantum dots. To this end, we have implemented the renormalized,
angular-resolved C2P correlation function [51], which has already been successfully applied to harmonically
confined quantum systems in earlier works [50, 64, 65]. Indeed, such reduced correlation functions
constitute a well-known tool for the investigation of finite systems [51, 66, 67]. The basic idea is illustrated
in figure 1, which shows an exemplary configuration of N = 13 particles in a 2D harmonic trap. Here the
shaded red circles illustrate the quantum smearing of the electrons, distinguishing them from classical point
particles. To characterize two-particle correlations, one can make use of the rotational symmetry of the
problem and use the modified coordinates (distance to the center of the trap of particles I and II, and the
angle α between them) shown in figure 1 without any loss of information. More specifically, we estimate the
corresponding two-particle density matrix ρ2(rI, rII,α) as a histogram in our PIMC simulation.

In addition, Thomsen and Bonitz [51] have suggested that it would be advantageous to filter out effects
that are caused by the inhomogeneous density profile n(r) and not by correlation effects themselves. To this
end, the actual C2P is normalized by the two-particle density matrix of a hypothetical uncorrelated system
with the same radial density profile as the interacting one,

ρ0
2(rI, rII,α) =

N − 1

N
4πrIrIIn(rI)n(rII), (11)

and is thus given by

gc2p(rI, rII,α) =
ρ2(rI, rII,α)

ρ0
2(rI, rII,α)

. (12)

We note that equation (11) does not depend on the angle α by design, as noninteracting particles are not
affected by their relative orientation towards each other.

While the C2P defined in equation (12) already constitutes a sophisticated tool for the investigation of
spatial correlations, the visualization and analysis of a 3D quantity is often difficult. As a final step, we
therefore define the integrated C2P

g int
c2p(rI,α; rII,min, rII,max) =

∫ rII,max
rII,min

drIIρ2(rI, rII,α)∫ rII,max
rII,min

drIIρ0
2(rI, rII,α)

, (13)

which can be interpreted in the following way: equation (13) constitutes a measure for the probability to
find one particle at distance rI to the center of the trap, with an angular difference of α to a second particle
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Figure 2. Superfluid fraction γsf (cf equation (9)) for ideal fermions in 3D. The symbols and lines show our numerical PIMC
data and the exact result known from theory. Results for Bose- and Fermi- and Boltzmann-statistics are shown in green, red, and
blue, respectively. Top left: N = 2; top right: N = 4; bottom: N = 6.

somewhere in the interval rII,min � rII � rII,max, where the min and max values are typically chosen as the
limits of a shell in the density profile n(r).

All results for the C2P shown in this work have been obtained according to equation (13).

3. Results

3.1. Noninteracting system
Let us start the discussion of our new simulation results with a brief study of the temperature dependence
of the superfluid fraction of noninteracting particles in a 3D harmonic trap. While similar analyses have
been presented in 2D in reference [50] and in 3D in reference [49], here we select somewhat different
parameters. In addition, the availability of exact analytical results makes it a valuable test case to verify the
implementation of our simulation scheme. Finally, the abnormal superfluid fraction of interacting electrons
presented in a later section follows the same basic mechanism as the ideal case, which makes it a good
starting point.

In figure 2, we show results for N = 2 (top left), N = 4 (top right), and N = 6 (bottom) ideal bosons
(green), fermions (red), and distinguishable so-called boltzmannons (blue) with the symbols and lines
showing PIMC data and the exact theoretical results. For all three system sizes, the superfluid fraction is
small and almost equal for bosons, fermions, and boltzmannons for large temperatures T = β−1, whereas
differences emerge for smaller T. In fact, it always holds

lim
T→∞

γsf = 0, (14)

as the systems becomes purely classical in this limit, I → Icl. Moreover, we note that the Boltzmann results
do, by definition, not depend on the system size N as ideal boltzmannons are fully uncorrelated. The first
correction to Icl is due to the finite extension λβ =

√
2πβ of quantum particles, which is similar for all

types of quantum statistics. With decreasing temperature, the paths of different particles in a PIMC
simulation start to overlap, and the formation of permutation cycles, i.e., paths containing more than a
single particle in them, becomes increasingly likely; see reference [41] for a recent extensive discussion. In
practice, this leads to an increased impact of quantum statistics, which explains the stark qualitative and
quantitative differences between the red, green, and blue data sets.

More specifically, bosons (and also boltzmannons) always attain a superfluid fraction of one in the limit
of T = 0 at these conditions, independent of the particle number N. Yet, we stress that this does certainly
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Figure 3. Exact results for the temperature-dependence of the superfluid fraction γsf for N = 2 particles in a 3D harmonic trap.
Solid blue: λ = 0 (ideal); dotted red: λ = 1; dashed green: λ = 10. The corresponding symbols show PIMC data for the same
parameters.

not mean that ideal bosons become an actual superfluid, as the Landau criterion requires a small value of
the coupling parameter λ in this case [68]. Fermions, on the other hand, exhibit a substantially more
complicated behaviour. In particular, the superfluid fraction diverges towards negative infinity for both
N = 2 and N = 6, and attains one for N = 4, although for lower temperatures compares to bosons. This
remarkable effect has been explained by Yan and Blume [49] in terms of the structure of the density matrix.
Specifically, it is the presence of an energetically low-lying state with a finite circulation for some N that
leads to a diverging moment of inertia and to the observed behaviour in γsf .

Finally, we stress the excellent agreement between theory and PIMC data for bosons, fermions, and
boltzmannons everywhere, which is a strong verification of our implementation and analysis. In addition,
we note that simulations are restricted to above a minimum temperature in the case of fermions due to the
FSP (see section 2.2 above), as can be seen most clearly for the leftmost red data point for N = 4. In
contrast, there is no such issue for bosons, where simulations are possible even at extremely low
temperatures.

3.2. Abnormal superfluid fraction of electrons: dependence on temperature
Let us begin our investigation of interacting electrons by studying the two-particle Hamiltonian. The
relative and center of mass coordinates are separable; the center-of-mass energy spectrum is solved
analytically and the relative energy spectrum is obtained by the finite-element method. Eigen energies
subject to a relative energy cutoff of around 100�Ω are computed. We calculate the actual moment of
inertia I through I = �

2
〈

M2
〉

th
/(kBT), where M is the angular momentum projection quantum number

and 〈〉 indicates the thermal average [49]. The classical moment of inertia Icl is obtained from the thermal

average
〈∑N

k=1r2
k,⊥

〉
. Here r2

k,⊥ is the square of distance of the kth particle to the z axis. Due to spherical

symmetry, it is related to the trap energy
〈∑N

k=1r2
k,⊥

〉
th
= 4

3

〈∑N
k=1

1
2 r2

k

〉
th

where the trap energy is then

evaluated by converting it to the thermal average of the derivative of the energy with respect to the trap
depth through the Hellmann–Feynman theorem. The solid blue, dotted red, and dashed green lines in
figure 3 show the numerical results for λ = 0, λ = 1, and λ = 10. First and foremost, we note that these
results are in excellent agreement to our new PIMC results, which are depicted by the corresponding
symbols. Secondly, we find that the coupling strength has a comparatively small impact on the behaviour of
γsf even for λ = 10; indeed, the results for moderate coupling (λ = 1) can hardly be distinguished from
the ideal curve. This is a strong indication that the response of electrons in a quantum dot to an external
rotation is largely determined by the properties of the corresponding noninteracting system.

Let us next consider our new PIMC data for the temperature dependence of γsf for larger systems that is
shown in figure 4. The left panel shows results for N = 4 particles, and the squares and circles have been
obtained for Fermi- and Bose-statistics. The green curves show results for the ideal case (λ = 0) already
discussed in figure 2 above and have been included as a reference. The dash-double-dotted grey curves have
been obtained for a small yet finite value of the coupling parameter, λ = 0.5, and closely follow the ideal

6
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Figure 4. Temperature dependence of the superfluid fraction γsf for N = 4 (left) and N = 6 (right) electrons in a 3D harmonic
trap. The dashed green, dash-double-dotted grey, dotted red, and dash-dotted blue curves correspond to λ = 0 (ideal), λ = 0.5,
λ = 3, and λ = 10, respectively. In addition, results for bosons and fermions are depicted as circles and squares.

case. In particular, the fermionic results cannot be distinguished from the noninteracting curve with the
bare eye, whereas the gap for Bose-statistics is significant.

Going to moderate coupling strength, λ = 3 (dashed red), shifts the curves substantially to the left
compared to smaller λ. Heuristically, this can be understood as follows: due to the stronger Coulomb
repulsion, the particles are more clearly separated. Consequently, it takes lower temperatures until paths of
different particles overlap, which is the driving mechanism of a large superfluid fraction [48, 52]. Again, we
find that the effect of the Coulomb repulsion is more pronounced in the case of bosons compared to
fermions. The reason for this effect has been reported by Dornheim [50] for the case of dipole–dipole
interaction: for fermions, weak interactions are effectively masked by the Pauli exclusion principle which
separates even ideal fermions from each other; in contrast, bosons tend to cluster next to each other, and are
thus more strongly affected by the Coulomb repulsion. A more detailed analysis of this effect is presented in
section 3.4 below.

Finally, the blue curves correspond to relatively strong coupling, λ = 10. Interestingly, the curves for the
two different types of quantum statistics are quite close to each other in this case, and both approach unity
for similar temperatures.

Let us next consider the same property, but for N = 6 shown in the right panel of figure 4. For bosons,
we find a quite similar picture compared to the left panel. Evidently, the particular particle number does not
substantially shape the qualitative physical behaviour at these conditions. In stark contrast, all fermionic
curves attain a maximum in γsf in the range 0.5 � β � 5 until they diverge towards negative infinity for
T → 0. Still, the impact of the coupling parameter λ is only quantitative, and the main feature is already
present in the ideal case. Furthermore, we again find that fermions are less affected by the Coulomb
repulsion compared to bosons.

In figure 5, we present a similar analysis, but for a purely 2D system. The results are very similar to the
3D case, but the T = 0 limit is flipped in the case of fermions: for N = 4, γsf diverges towards negative
infinity, and for N = 6, it attains unity just as in the Bose-case. Still, the phenomenological reason is the
same for both 2D and 3D: it is the presence of a state with finite circulation [49] in the respective cases
that causes the negative divergence of the superfluid fraction.

Let us briefly postpone our analysis of the connection of the abnormal superfluid fraction of fermions to
the structural properties of the system to touch upon the manifestation of the FSP. In figure 6, we show the
PIMC expectation values for the denominator in equation (4), i.e., the average sign. The top and bottom
rows have been obtained for 2D and 3D systems, and the left and right columns correspond to N = 4 and
N = 6 spin-polarized electrons. Furthermore, the different data points distinguish data for various values of
the coupling parameter λ. First and foremost, we note that all depicted curves exhibit the same qualitative
behaviour: for small β (large temperatures), the extension of the paths of different particles is substantially
smaller than the average inter-particle separation. Consequently, permutation cycles only rarely appear in
the PIMC simulation, most configuration weights are positive, and the average sign is large. With decreasing
temperature, the thermal wavelength increases as λβ ∼

√
β and, eventually, the paths of all particles in the

system overlap. This makes the formation of permutation cycles significantly more likely, configurations

7



New J. Phys. 24 (2022) 113024 T Dornheim and Y Yan

Figure 5. Temperature dependence of the superfluid fraction γsf for N = 4 (left) and N = 6 (right) electrons in a 2D harmonic
trap. The dashed green, dash-double-dotted grey, dotted red, and dash-dotted blue curves correspond to λ = 0 (ideal), λ = 0.5,
λ = 3, and λ = 10, respectively. In addition, results for bosons and fermions are depicted as circles and squares. The data for the
ideal system have partly been taken from reference [50].

Figure 6. Average sign from the PIMC simulations from figure 5 (top row) and figure 4 (bottom row). The straight lines
correspond to exponential fits according to equation (15).

with positive and negative weights appear with a similar frequency in the PIMC simulation, and the average
sign drops. The straight lines in figure 6 have been obtained from exponential fits
according to

S(β) = a e−bβ (15)

above an empirical minimum value of β, with a and b being the free parameters. Evidently, the fits are in
excellent agreement to the PIMC data, which confirms the exponential nature of the FSP reported in earlier
studies [45].

A related interesting point is the PIMC estimation of the corresponding energies. More specifically, we
consider the well-known virial theorem [69], which gives a relation between the kinetic (K), interaction
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Figure 7. Relative difference in the kinetic energy K (in per cent) between the direct PIMC estimator and the virial theorem
(equation (16)) for N = 6 electrons atλ = 3 as a function of the inverse temperature β. The red circles and blue diamonds
correspond to the 3D and 2D case, and the latter have been shifted upwards (horizontal dotted grey line) for better visibility.
The left and right panels have been obtained for Bose- and Fermi-statistics.

(W), and external potential (vext) contributions to the total energy,

K = Vext −
W

2
. (16)

In practice, we directly estimate K in our PIMC simulation using the standard thermodynamic estimator
(see, e.g., reference [40]) and compare it to the right-hand side of equation (16). The results are
depicted in figure 7, where we show the relative deviation between the two estimations of K in per cent. We
note that the virial theorem as it is given in equation (16) is a general property of the Hamiltonian and
holds independent of the particular type of quantum statistics. The left panel has been obtained for
Bose-statistics, and the red circles and blue diamonds show results for the 3D and 2D case, where the latter
have been shifted by 0.2% for better visibility. Evidently, all data points fluctuate around zero deviation
within the given level of statistical uncertainty. Further, we find that the error bars are only weakly
dependent on β, and are of the order of ΔK/K ∼ 0.01%.

The right panels shows results from the same simulation computed for Fermi-statistics by evaluating
equation (4). Again, we find that the data points fluctuate around zero deviation between the two different
estimations of K, which is a strong verification of our simulation scheme and its implementation. Yet, we
find a drastic increase of the error bars with β as predicted by equation (6). This nicely illustrates the
relative difficulty of fermionic PIMC simulations compared to the Bose-case, where this problem is absent.
In particular, simulations of as few as four electrons become unfeasible even on modern supercomputers
when the temperature is decreased.

Let us next consider the structural properties of electrons in a 2D quantum dot, and their relation to
the abnormal superfluid fraction reported above. To this end, we estimate the integrated C2P defined in
equation (13) in section 2.4. The results are shown in figure 8 for N = 4 at λ = 10 and β = 10. The top row
shows the integrated C2P itself in the α– rI-plane, with the reference particle being located somewhere in
the range 1.5 � rII � 2.5 (horizontal dashed grey lines), i.e., around the maximum of the radial density
(see the bottom right panel of figure 8). Further, the left and right panels show results for fermions and
bosons, respectively. Naturally, the C2P is fully symmetric in α around 180 degrees and we restrict ourselves
to this half-range. Most importantly, we find that the type of quantum statistics has only very mild effects
on the structural properties on the system at these conditions. This is a direct consequence of the strong
coupling strength, which effectively separates the paths of individual particles from each other in the PIMC
simulation and suppresses the formation of permutation cycles [41]. For small angular separations α, the
integrated C2P exhibits a pronounced exchange–correlation hole, followed by a maximum at α = 90, a
subsequent minimum which is substantially less pronounced than the exchange–correlation hole itself, and
a second maximum at the opposite end of the system, i.e., around α = 180. This can be seen particularly
well in the bottom left panel of figure 8, where we show a scan-line over the C2P at rI = 2, see the solid red
line in the top row. The red circles and green squares show results for fermions and bosons, but the
deviations between the two data sets can barely be resolved with the naked eye. From a physical perspective,
this indicates that the most common configuration of particles is given by a single ring around the center of
the trap containing all four particles. This is further substantiated by the radial density profile n(r) shown in
the bottom right panel of figure 8. Here the main impact of quantum statistics can be found around r = 0,
where the probability to find a fermionic particle is reduced compared to the case of bosons.
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Figure 8. Top row: integrated C2P for N = 4 electrons at λ = 10 and β = 10 for the range 1.5 � rII � 2.5 (horizontal dashed
grey lines) for fermions (left) and bosons (right). Bottom left: scan-line of the integrated C2P at rI = 2. Bottom right: radial
density profile n(r).

Let us now connect these findings regarding the structural properties of the system to the abnormal
superfluid fraction investigated above. In particular, it can be seen in figure 5 that γsf strongly depends on
the type of quantum statistics at these conditions. Remarkably, this is not reflected in the structural
properties of the system, which, indeed, can hardly be distinguished at all. From a practical perspective, this
nontrivial observation can be directly traced back to the estimation of NCRI in the path-integral picture via
the area estimator equation (9). In a configuration without any pair exchange, substantial parts of the
contributions to the full area A (equation (10)) for each configuration are expected to cancel, as, on average,
area contributions with positive and negative orientation are equally likely. This only significantly changes
upon the formation of permutation cycles, for which all particles contribute with the same orientation to
equation (10). The negative superfluid fraction in the case of fermions, therefore, is due to the contribution
of configurations with (a) one pair exchange (i.e., a single permutation cycle containing two particles and
two individual particle paths) or (b) three pair exchanges (i.e., a single permutation cycle containing all
N = 4 particles); these are the only two possibilities that contribute with a negative weight to the
expectation value of 〈A2

z〉 when being evaluated as the fermionic ratio in equation (4). For bosons, all
contributions remain positive. The PIMC-based estimation of the structural properties, on the other hand,
is much less, and much more indirectly affected by the permutation structure of a configuration. In
particular, structural properties are to a large degree determined by configurations without any
permutations in it (we find an average sign of S = 0.47 for these conditions, indicating that exchange effects
are not a dominant aspect of the system [45]) as no inherent cancellation as in the area estimator takes
place. The only cancellation is due to sign changes for different permutation cycles, but this effect is
comparably small here. For completeness, we note that, for very large λ, the formation of permutation
cycles in our PIMC simulations will be prevented by the strong Coulomb repulsion; in this case, we expect
to see no difference between bosons and fermions for either the structural properties or for the quantum
moment of inertia.

3.3. Particle number dependence
A further interesting topic of investigation is the dependence of the properties of small electronic systems
on the number of particles. In this context, we mention that the properties of confined few-particle systems
often sensitively depend on N, which can be seen particularly well in the investigation of addition energies
[22–25]. Furthermore, Filinov et al [52] have found that the NCRI of strongly coupled charged bosons
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Figure 9. Superfluid fraction in 2D (left) and 3D (right). Shown is the particle number dependence for λ = 3 with the squares
and circles corresponding to Fermi- and Bose-statistics, and the dashed green and dotted red lines showing results for β = 3 and
β = 5, respectively.

exhibits certain ‘magic numbers’, where the superfluid fraction is most pronounced. In this work, we
provide a similar analysis for the superfluid fraction γsf of electrons in quantum dots.

The results are shown in figure 9, where we show the N-dependence of γsf both in 2D (left panel)
and 3D (right panel) at moderate coupling, λ = 3. The circles and squares show results for Bose- and
Fermi-statistics, and the red and green curves have been obtained for β = 5 and β = 3. For all depicted
cases, the bosonic curves are quite smooth and exhibit a monotonous increase (the small exception being
N = 3 for β = 3 in 2D) in the superfluid fraction with N. Heuristically, this can be understood as follows:
in the harmonic trap, the average density increases with N. This, in turn, leads to an increased value of the
degeneracy parameter χ = λβ/r, where r is the average inter-particle distance [48], and thus to an
increasing value of γsf .

For fermions, on the other hand, the situation is significantly more complicated and interesting. In the
2D-case, the superfluid fraction is rapidly oscillating with N, which is especially pronounced for β = 5. In
particular, the negative and positive values of γsf can be traced back to the ideal case, see reference [50] for
such data in two dimensions. A second trend, which can be seen most clearly for β = 3, is given by the
overall decrease of the superfluid fraction with N. This, too, is expected by simple physical intuition. An
increase in N leads to a transition from a finite to a bulk system. For bosons, the crossover from a normal to
a superfluid system then attains the character of a true phase transition under the right conditions [48]. In
contrast, a single species of fermions such as spin-polarized electrons cannot exhibit the required
off-diagonal long-range order [63], and a corresponding bulk system will thus not be superfluid. This is
reflected in the observed decrease in γsf with N. For completeness, we mention that superfluidity in
Fermi-systems is still possible, but requires a pairing mechanism such as the interaction with phonons
leading to superconductivity [70].

We find similar trends in the case of fermions for 3D systems, although both the oscillations with N and
the decrease with increasing system size are somewhat less pronounced.

Let us conclude this investigation of the N-dependence by briefly revisiting the FSP. To this end, we show
the average sign obtained for the simulations shown in figure 9 in figure 10. The points show the PIMC
data, and the straight lines correspond to exponential fits of the form

S(N) = a e−bN , (17)

and have been obtained by introducing an empirical minimum value of N = 7 (vertical dashed grey line).
Strictly speaking, equation (17) is only expected to hold for a bulk system such as the uniform electron gas
[10, 45], whereas the dependence of a finite, trapped system is expected to be more complicated. Still, we do
find at least a qualitative agreement with the exponential decay. The particularly small value of S for the 3D
case at β = 5 is directly reflected by the large error bars in γsf observed in figure 9. This again strongly
illustrates the severe limitations of fermionic PIMC simulations due to the notorious sign problem.
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Figure 10. Particle number dependence of PIMC results for the average sign S for λ = 3. The black stars (green squares) and
blue diamonds (red circles) have been obtained for β = 3 andβ = 5, respectively, for spin-polarized electrons in a 2D (3D)
quantum dot. The lines correspond to exponential fits for N � 7 (vertical dashed grey line), cf equation (17).

3.4. Dependence on coupling strength
A highly interesting question is the precise nature of the intricate interplay of the Coulomb repulsion with
the effect of quantum statistics. In this regard, our computationally expensive PIMC simulations are
uniquely suited to provide reliable answers as no approximations are involved. In figure 11, we show results
for the integrated C2P (cf equation (13) above) for N = 4 spin-polarized electrons in a 2D harmonic trap
at a moderate temperature, β = 1. The left and right columns have been obtained for Fermi- and
Bose-statistics, and the reference particle is always located in the interval 1.5 � rII � 2.5 (horizontal dashed
grey lines in the top left panel).

The top row corresponds to a very weakly coupled system (λ = 10−3), where the Coulomb repulsion
has a negligible effect. For fermions, the Pauli exclusion principle nevertheless results in a pronounced
exchange–correlation hole around α = 0, whereas the rest of the system appears to be relatively featureless.
In stark contrast, a corresponding Bose-system at the same conditions exhibits the opposite behaviour, as
bosons tend to cluster around each other. Increasing the coupling strength to λ = 0.1 leaves the
Fermi-system unchanged, whereas the positive exchange–correlation hill of the bosons is substantially
decreased. From a physical perspective, this means that bosons are strongly influenced even by weak
repulsive interactions, whereas the latter are effectively masked by the Pauli principle in the case of
fermions. For completeness, we mention that the same point has recently been reported by Dornheim [50]
in the case of dipole–dipole repulsion. The same trend has also been noted in our discussion of figures 5
and 4 above, where the superfluid fraction γsf was substantially more affected by the coupling parameter λ
for bosons compared to fermions.

Going back to the integrated C2P shown in figure 11, a further increase of the coupling strength to
λ = 1 (middle row) again only leads to very mild changes for Fermi-statistics, whereas there appears a
qualitative change for bosons: the exchange–correlation hill is changed to a hole, although it is still
significantly less pronounced compared to the left panel. At λ = 3, i.e., at moderate coupling, the
importance of quantum statistics is drastically reduced and both panels give a nearly identical picture.
Finally, the strong Coulomb repulsion at λ = 10 effectively separates individual particles, and no differences
between bosons and fermions can be seen with the naked eye.

Let us next consider figure 12, where we show a scan-line of the integrated C2P at rI = 2 (solid red line
in the top left panel of figure 11). The solid and dashed lines distinguish fermions and bosons, and the
different colours correspond to values of the coupling parameter λ. The arguably most striking feature of
this plot is the exchange–correlation hill for bosons at λ � 0.1. In addition, it clearly illustrates the small
impact of the coupling strength on fermions for the same λ. For λ = 3, there is still a distinct impact of
quantum statistics, whereas no such difference can be resolved for λ = 10. The latter case also constitutes
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Figure 11. Integrated C2P for N = 4 spin-polarized electrons in a harmonic confinement for β = 1 in 2D for Fermi- (left) and
Bose-statistics (right).
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Figure 12. Scan-line along rI = 2 of the integrated C2P depicted in figure 11 (see the solid red line in the top left panel) for
bosons (dashed) and fermions (solid) and different values of the coupling parameter λ.

the only curve with a second maximum around α = 180. Let us close this discussion of the integrated C2P
with a practical remark. Obviously, the probability to find two identical fermions at the exact same position
must always be zero, ρ2(r, r, 0) = 0. Yet, by integrating over a finite range of the reference particle
rII,min � rII � rII,max, the integrated C2P can be nonzero for all values of rI even for α = 0.

4. Summary and outlook

In summary, we have presented extensive new ab initio PIMC simulation results for electrons in 2D and
3D quantum dots. In particular, we have investigated the NCRI of such systems and have found a divergent,
negative abnormal superfluid fraction which manifests under certain conditions due to the interplay of
Fermi-statistics and the harmonic confinement [49]. In addition, we have thoroughly investigated the
structural properties of such systems by computing the C2P correlation function suggested by Thomsen and
Bonitz [51]. The comparison of results for Bose- and Fermi-statistics has revealed that the onset of the
abnormal superfluid fraction is hardly connected to the static structure, which can be nearly independent of
the type of quantum statistics, whereas the respective superfluid fractions diverge. Within the path-integral
picture, this nontrivial finding can be directly explained by the impact of the permutation structure, which
strongly affects the area estimator for γsf , but only has a small effect on other observables when the average
sign S is large. Indeed, the observed divergence of the quantum moment of inertia between bosons and
fermions is a direct consequence of the structure of the density matrix with respect to the angular
momentum. In addition, we have substantiated earlier findings for harmonically confined quantum dipole
systems [50], where it has been found that the repulsion between two fermions is effectively masked by the
Pauli exclusion principle for weak too moderate values of the coupling parameter λ. In stark contrast,
bosons sensitively react even to small changes in the coupling strength.

We believe that our work has important implications for future work. First and foremost, we note that
electrons in a harmonic oscillator potential constitute a very important model system. Our extensive set of
exact PIMC results is freely available online [46], and constitutes an unassailable benchmark for the
development of new methods and approximations. Moreover, the observed interplay between quantum
effects and Coulomb coupling is interesting in its own right and further advances our fundamental
understanding of trapped few-body systems. Finally, we note that our predictions for the abnormal
quantum moment of inertia can be verified in future experiments in different ways. In principle, it would
be sufficient to measure the response of a quantum dot to an external rotation. A more convenient route
might be given by the application of an external magnetic field. Indeed, a constant rotation along the z-axis
	Ω is equivalent to a homogeneous magnetic field along z-axis B = −2mc

e
	Ω. The quantum moment of inertia

is proportional to the magnetization vector 	M = −	H + 	B/μ0 under an infinitesimal magnetic field B. In
this regard, we note that the direct PIMC simulation of electrons in the presence of a finite magnetic
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field [71] is likely challenging due to an additional phase problem, and constitutes an important direction
for future works.

Additional future extensions of our work might include the investigation of spin-unpolarized systems,
which would allow for the study of a spin-resolved C2P. In particular, it is clear that the observed effective
screening of the pair interaction by the Pauli principle will not apply to fermions of a different
spin-orientation, which will lead to an interesting mixture of different effects. In addition, we note that the
central computational bottleneck of the present study is given by the FSP, which precludes the simulation of
larger systems and lower temperatures. In this regard, we mention the remarkable recent progress in the
fermionic quantum Monte Carlo simulation at finite temperature in the context of warm dense matter
research [30, 72–83]. Specifically, the adaption of these novel methods to the simulation of electrons in
quantum dots seems promising and rewarding. Finally, we mention that the C2P that has been used in the
present work allows to reliably describe crossovers and melting phenomena in finite systems [51]. This is in
stark contrast to previously employed Lindemann-type approaches [84] that rely on the underlying Monte
Carlo sampling scheme. Thus, the present set-up can be straightforwardly used to study the impact of
quantum effects onto the crystallization of trapped few-body systems.
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initio simulation of warm dense matter Phys. Plasmas 27 042710
[10] Dornheim T, Groth S and Bonitz M 2018 The uniform electron gas at warm dense matter conditions Phys. Rep. 744 1–86
[11] Dornheim T, Groth S, Vorberger J and Bonitz M 2018 Ab initio path integral Monte Carlo results for the dynamic structure factor

of correlated electrons: from the electron liquid to warm dense matter Phys. Rev. Lett. 121 255001
[12] Saumon D, Hubbard W B, Chabrier G and van Horn H M 1992 The role of the molecular-metallic transition of hydrogen in the

evolution of jupiter, saturn, and brown dwarfs Astrophys. J. 391 827–31
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